CDS

CDS + CMS + Networks

A CDS+CMS perspective on recent results in distributed control

Nikolai Matni (nmatni@caltech.edu)
http://www.cds.caltech.edu/~nmatni

What makes a problem "easy"?

In optimization and control, we strive for

Computational Tractability

and

Scalability

What makes a problem "easy"?

In optimization and control, we look for

Convexity

and

Reasonable (Sub) Problem Sizes

What makes a problem "easy"?

In optimization and control, we look for

Convexity

and

Reasonable (Sub) Problem Sizes
Reasonably Sized Implementations

What makes a problem "easy"?

Different Flavors of Convexity

- Linear Programs (LPs)
- Second Order Cone Programs (SOCPs)
- Semi-definite Programs (SDPs)

Different Reasonable Problem Sizes

- LPs: Millions of variables
- SOCPs: Thousands of variables
- SDPs: Hundreds of variables

What makes a problem "easy"?

Different Flavors of Convexity

- Linear Programs (LPs)
- Second Order Cone Programs (SOCPs)
- Semi-definite Programs (SDPs)

Different Reasonable Problem Sizes

- LPs: Millions of variables
- SOCPs: Thousands of variables
- SDPs: Hundreds of variables

What makes a problem "easy"?

Different Flavors of Convexity

- Linear Programs (LPs)
- Second Order Cone Programs (SOCPs)
- Semi-definite Programs (SDPs)

Different Reasonable Problem Sizes

- LPs: Millions of variables
- SOCPs: Thousands of variables
- SDPs: Hundreds of variables

Application Areas that Need(ed) our Help

Optimal power flow (OPF)

- Non-convex, possibly large scale optimization

Software Defined Networking (SDN)
Active control of smart grid
Automated highway systems

- All huge scale
- All need real time distributed (optimal) control
- Non-convex

Application Areas that Need(ed) our Help

In general, these problems are non-convex and not scalable...

Use Structure to Relax

In general, these problems are non-convex and not scalable...

General

Hard problems

Main Theme of $1^{\text {st }}$ Part:
Use Structure to Relax

Use Structure to Relax

In general, these problems are non-convex and not scalable...

General \rightarrow Structured takes
Hard problems \rightarrow Easy problems

Main Theme of $1^{\text {st }}$ Part:
Use Structure to Relax

Roadmap for 1st $^{\text {st }}$ Part

DC OPF

- Connections to positive systems
- Connections to Sum of Squares Programming \& Polynomial Optimization

Distributed Optimal Control

- Why it's hard: Witsenhausen
- How can we make it tractable: Quadratic Invariance
- How can we make it scalable: Localizable Systems

Setup for $2^{\text {nd }}$ Part

Break

Case Study: DC OPF

Kirchoff gives

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3} \\
I_{4}
\end{array}\right]=\left[\begin{array}{cccc}
y_{12}+y_{14} & -y_{12} & 0 & -y_{14} \\
-y_{21} & y_{21}+y_{23}+y_{24} & -y_{23} & -y_{24} \\
0 & -y_{32} & y_{32} & 0 \\
-y_{41} & -y_{42} & 0 & y_{41}+y_{42}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right]
$$

Power Flow Optimization Using Positive Quadratic Optimization, by Lavaei, Rantzer and Low, 2011

Case Study: DC OPF

The DC OPF problem is

$$
\begin{align*}
\underset{I_{j}, V_{j}}{\operatorname{minimize}} & \sum_{j=1}^{N} I_{j} V_{j} \\
\text { subject to } & I=Y V \tag{a}\\
& V_{k} I_{k} \leq P_{k}, V_{k}^{\min } \leq V_{k} \leq V_{k}^{\max } \tag{b}\\
& y_{j k}\left(V_{k}-V_{j}\right)^{2} \leq L_{j k} \tag{c}\\
& \text { for all } j, k=1, \ldots, N
\end{align*}
$$

(a) Kirchoff's law
(b) Node power and voltage constraints
(c) Line constraints

Indefinite Quadratic Objectives and Constraints \rightarrow Non-Convex

Case Study: DC OPF

The DC OPF problem is of the form

$$
\begin{aligned}
\underset{x}{\operatorname{maximize}} & x^{\top} M_{0} x \\
\text { subject to } & x^{\top} M_{k} x \geq b_{k} \\
& \text { for } k=1, \ldots, K
\end{aligned}
$$

Indefinite Quadratic Objectives and Constraints \rightarrow Non-Convex

Case Study: DC OPF

The DC OPF problem is of the form

$$
\begin{aligned}
\underset{x}{\operatorname{maximize}} & x^{\top} M_{0} x \\
\text { subject to } & x^{\top} M_{k} x \geq b_{k} \\
& \text { for } k=1, \ldots, K
\end{aligned}
$$

Indefinite Quadratic Objectives and Constraints \rightarrow Non-Convex In general, NP-Hard

Case Study: DC OPF

The DC OPF problem is of the form

$$
\begin{array}{cl}
\underset{x}{\operatorname{maximize}} & x^{\top} M_{0} x \\
\text { subject to } & x^{\top} M_{k} x \geq b_{k} \\
& \text { for } k=1, \ldots, K
\end{array}
$$

Indefinite Quadratic Objectives and Constraints \rightarrow Non-Convex In general, NP-Hard

A little bit of algebra shows that the M_{k} are Metzler This case is NOT general

Case Study: DC OPF

The DC OPF problem is of the form

Case Study: DC OPF

The DC OPF problem is of the form

$\underset{x}{\operatorname{maximize}}$	$x^{\top} M_{0} x$
subject to	$x^{\top} M_{k} x \geq b_{k}$
	for $k=1, \ldots, K$
maximize	$\operatorname{Tr} M_{0} X$
subject to	$\operatorname{Tr} M_{k} X \geq b_{k}$
	for $k=1, \ldots, K$
	$\operatorname{Tank}(X) \equiv 1$

Convex!
But are we solving the same problem?

Case Study: DC OPF

The DC OPF problem is of the form

$$
\begin{aligned}
\underset{X \geq 0}{\operatorname{maximize}} & \operatorname{Tr} M_{0} X \\
\text { subject to } & \operatorname{Tr} M_{k} X \geq b_{k} \\
& \text { for } k=1, \ldots, K \\
& \operatorname{rank}(X)=1
\end{aligned}
$$

We are! Relaxation exact because of Metzler constraints

Case Study: DC OPF

The DC OPF problem is of the form

$$
\begin{array}{cl}
\underset{X \geq 0}{\operatorname{maximize}} & \operatorname{Tr} M_{0} X \\
\text { subject to } & \operatorname{Tr} M_{k} X \geq b_{k} \\
& \text { for } k=1, \ldots, K \\
& \operatorname{rank}(X)=1
\end{array}
$$

We are! Relaxation exact because of Metzler constraints
Let $X=\left(x_{i j}\right)$ be any positive semi-definite matrix satisfying constraints.

$$
\begin{aligned}
& x_{i i} \geq 0 \\
& x_{i j} \leq \sqrt{x_{i i} x_{j j}}
\end{aligned}
$$

Let $x=\left(\sqrt{x_{i i}}\right)$. Then $\left(x x^{\top}\right)_{i i}=X_{i i}$, but $\left(x x^{\top}\right)_{i j}=\sqrt{x_{i i} x_{j j}} \geq X_{i j}$. Then $x^{\top} M_{k} x \geq \operatorname{Tr} M_{k} X$ because M_{k} are Metzler.

Aside: Positive Systems Theory

Dynamical system

$$
\dot{x}=A x
$$

Suppose A is Metzler. Then:

$$
x(0) \in \mathbb{R}_{+} \Longrightarrow x(t) \in \mathbb{R}_{+} \forall t \geq 0
$$

How does this help? Lyapunov/Storage functions can be linear!

$$
A \xi<0 \quad A^{T} P+P A \prec 0 \quad A^{T} z<0
$$

$$
V(x)=\max _{k}\left(x_{k} / \xi_{k}\right) \quad V(x)=x^{T} P x
$$

$V(x)=z^{T} x$

Aside: Duality and Relaxations

Lagrangian of original problem:

$$
\begin{aligned}
L\left(x, \lambda_{k}\right) & =x^{\top} M_{0} x+\sum_{k=1}^{K} \lambda_{k}\left(x^{\top} M_{k} x-b_{k}\right) \\
& =-\sum_{k=1}^{K} \lambda_{k} b_{k}+x^{\top}\left(M_{0}+\sum_{k=1}^{K} \lambda_{k} M_{k}\right) x
\end{aligned}
$$

Dual:

$$
\begin{aligned}
\underset{\lambda_{k} \geq 0}{\operatorname{minimize}} & -\sum_{k=1}^{K} \lambda_{k} b_{k} \\
\text { subject to } & M_{0}+\sum_{k=1}^{K} \lambda_{k} M_{k} \preceq 0
\end{aligned}
$$

Dual of dual:

$$
\begin{aligned}
\underset{X \geq 0}{\operatorname{maximize}} & \operatorname{Tr} M_{0} X \\
\text { subject to } & \operatorname{Tr} M_{k} X \geq b_{k} \\
& \text { for } k=1, \ldots, K
\end{aligned}
$$

Aside: SOS Optimization

Polynomial optimization = polynomial non-negativity

$$
\max p(x)=\min \gamma \text { s.t. } \gamma-p(x) \geq 0
$$

Problem: testing polynomial non-negativity NP-hard in general.

Solution: check weaker sufficient condition

$$
\text { If } p(x)=\sum q(x)^{2} \text { then } p(x) \geq 0
$$

Aside: SOS Optimization

Computational test for SOS is a semi-definite program.

For simplicity, fix $\boldsymbol{d}=1$. Then

$$
p(x)=\left[\begin{array}{c}
1 \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]^{\top} Q\left[\begin{array}{c}
1 \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \text { is SOS if and only if } Q \succeq 0
$$

Coefficients of $p(x)$ impose affine constraints on Q.

Aside: SOS Optimization

Constrained polynomial optimization

$$
\max p(x) \text { s.t. } g_{i}(x) \geq 0
$$

Relax to

$$
\begin{gathered}
\min \gamma \text { s.t. } \gamma-p(x)=s_{0}(x)+\sum_{i} s_{i}(x) g_{i}(x) \\
s_{0}(x), s_{i}(x) \text { are } S O S(2 d)
\end{gathered}
$$

Get smaller and smaller upper bounds by letting d increase and including more "polynomial Lagrange multipliers".

So how does the DC OPF problem relate to this?

Aside: SOS Optimization

SOS relaxation of original problem:

$\min \gamma$ s.t. $\gamma-x^{\top} M_{0} x=s_{0}(x)+\sum_{k} s_{k}(x)\left(x^{\top} M_{k} x-b_{k}\right)$
$s_{k}(x)=\left[\begin{array}{l}1 \\ x\end{array}\right]^{\top} Q_{k}\left[\begin{array}{l}1 \\ x\end{array}\right], Q_{k} \succeq 0$

Expand RHS and equate coefficients

$$
\begin{gathered}
\gamma=Q_{0}^{11}-\sum_{k=1}^{K} Q_{k}^{11} b_{k}, Q_{k}^{1, j}=0 \text { for all } j \neq 1 . \\
\text { For } k \geq 1, Q_{k}^{i j}=0 \text { for all } i, j \neq 1 \\
-M_{0}=Q_{0}^{2: n+1,2: n+1}+\sum_{k=1}^{K} Q_{k}^{11} M_{k}
\end{gathered}
$$

Aside: SOS Optimization

SOS relaxation of original problem:

$$
\begin{array}{ll}
\underset{Q_{k}^{11} \geq 0, Q \succeq 0}{\operatorname{minimize}} & Q_{0}^{11}-\sum_{k=1}^{K} Q_{k}^{11} b_{k} \\
\text { subject to } & \sum_{k=1}^{K} Q_{k}^{11} M_{k}+M_{0}=-Q
\end{array}
$$

Aside: SOS Optimization

SOS relaxation of original problem:

$$
\begin{array}{ll}
\underset{Q_{k}^{11} \geq 0, Q \succeq 0}{\operatorname{minimize}} & Q_{0}^{11}-\sum_{k=1}^{K} Q_{k}^{11} b_{k} \\
\text { subject to } & \sum_{k=1}^{K} Q_{k}^{11} M_{k}+M_{0}=-Q
\end{array}
$$

$$
\begin{aligned}
\underset{Q_{k}^{11} \geq 0, Q \succeq 0}{\operatorname{minimize}} & -\sum_{k=1}^{K} Q_{k}^{11} b_{k} \\
\text { subject to } & \sum_{k=1}^{K} Q_{k}^{11} M_{k}+M_{0} \preceq 0
\end{aligned}
$$

Aside: SOS Optimization

SOS relaxation of original problem:

$$
\begin{array}{ll}
\underset{Q_{k}^{11} \geq 0, Q \succeq 0}{\operatorname{minimize}} & Q_{0}^{11}-\sum_{k=1}^{K} Q_{k}^{11} b_{k} \\
\text { subject to } & \sum_{k=1}^{K} Q_{k}^{11} M_{k}+M_{0}=-Q \\
\underset{Q_{k}^{11} \geq 0, Q \succeq 0}{\operatorname{minimize}} & -\sum_{k=1}^{K} Q_{k}^{11} b_{k} \\
\text { subject to } & \sum_{k=1}^{K} Q_{k}^{11} M_{k}+M_{0} \preceq 0
\end{array}
$$

This is the dual of our original problem!
Quadratic optimization with Metzler matrices is SOS(2) exact.

DC OPF: Summary

Optimal power flow (OPF)

- Convex Relaxations are exact for DC power flow
- Go see Steven Low's talk on Thursday for AC power and scalability

Solution from OPF problem provides reference trajectory for system to track.

Future smart grid will need active control Large scale \rightarrow Distributed Architecture

Roadmap for 1st $^{\text {st }}$ Part

DC OPF

- Connections to positive systems
- Connections to Sum of Squares Programming \& Polynomial Optimization

Distributed Optimal Control

- Why it's hard: Witsenhausen
- How can we make it tractable: Quadratic Invariance
- How can we make it scalable: Localizable Systems

Setup for $2^{\text {nd }}$ Part

Break

Distributed Control

Large scale systems not amenable to centralized control

Idea: restrict information each controller has access to

Positives: control laws are local, and hence scalable to implement.

Negatives: in general non-convex. Witsenhausen.

Witsenhausen Counter-Example

Comms problem masquerading as a control problem

Roughly, C_{1} needs to tell C_{2} (via $\mathrm{x}_{1}=\mathrm{u}_{1}+\mathrm{x}_{0}$) what x_{0} was
$-\mathrm{C}_{1}$'s only goal is to signal through the plant as efficiently as possible

- Reliable communication through noisy channel \rightarrow coding (i.e. non-linear)

Distributed Control

Witsenhausen shows that distributed control is non-convex in general

What structure do we need to regain convexity?

Witsenhausen hard because of comms aspect. Need to remove this incentive to signal.

Quadratic Invariance (Rotkowitz \& Lall ‘06), Partial Nestedness (Ho \& Chu '72), Funnel Causality (Bahmieh \& Voulgaris '03), Poset Causality (Shah \& Parrilo '12)

Distributed Control

Witsenhausen shows that distributed control is non-convex in general

What structure do we need to regain convexity?

Witsenhausen hard because of comms aspect. Need to remove this incentive to signal.

Quadratic Invariance (Rotkowitz \& Lall ‘06), Partial Nestedness (Ho \& Chu '72), Funnel Causality (Bahmieh \& Voulgaris ’03), Poset Causality (Shah \& Parrilo '12)

Classical Optimal Control Theory

regulated

$$
\begin{aligned}
\operatorname{minimize}_{K} & \left\|P_{z w}+P_{z u} K\left(I-P_{y u} K\right)^{-1} P_{y w}\right\| \\
\text { s.t. } & K \text { causal } \\
& K\left(I-P_{y u} K\right)^{-1} \text { stable }
\end{aligned}
$$

closed loop map from disturbance \rightarrow reg. output

Classical Optimal Control Theory

regulated

$$
\begin{aligned}
& \operatorname{minimize}_{K}\left\|P_{z w}+P_{z u} \xrightarrow{K\left(I-P_{y u} K\right)^{-1}} P_{y w}\right\| \\
& \text { s.t. } K \text { causal } \\
& K\left(I-P_{y u} K\right)^{-1} \text { stable Feedback } \\
& \text { is non-convex }
\end{aligned}
$$

Classical Optimal Control Theory

regulated
disturbance
measured output

$$
\begin{array}{r}
\operatorname{minimize}_{Q}\left\|P_{z w}+P_{z u} Q P_{y w}\right\| \\
\text { s.t. } Q \text { stable \& causal }
\end{array}<\text { Convex in } Q
$$

Distributed Optimal Control Theory

Many decision agents leads to information asymmetry

Manifests as subspace constraints on K in optimal control problem.

$$
\begin{aligned}
& \operatorname{minimize}_{K}\left\|P_{z w}+P_{z u} K\left(I-P_{y u} K\right)^{-1} P_{y w}\right\| \\
& \text { s.t. } K \text { causal } \\
& K\left(I-P_{y u} K\right)^{-1} \text { stable } \\
& K \in \mathcal{S} \begin{array}{c}
\text { Distributed }
\end{array} \\
& \text { constraint }
\end{aligned}
$$

Distributed Optimal Control Theory

Many decision agents leads to information asymmetry

Manifests as subspace constraints on K in optimal control problem.

Distributed Optimal Control Theory

Many decision agents leads to information asymmetry

Manifests as subspace constraints on K in optimal control problem.

$$
\mathcal{S}=\cdot\left[\begin{array}{llll}
* & 0 & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & 0 \\
* & * & * & *
\end{array}\right]
$$

Quadratic Invariance

A constraint set S is $Q /$ under $P_{y u}$ if

$$
K P_{y u} K \in \mathcal{S}, \forall K \in \mathcal{S}
$$

If S is Q I under $P_{y u}$, then $K \in \mathcal{S}$ if and only if $Q \in \mathcal{S}$
If we have QI, model matching problem becomes

$$
\begin{aligned}
\operatorname{minimize}_{Q} & \left\|P_{z w}+P_{z u} Q P_{y w}\right\| \\
\text { s.t. } & Q \text { stable \& causal } \\
& Q \in \mathcal{S}
\end{aligned}
$$

Convex in Q !
How does this relate to our intuition about signaling? ${ }_{43}$

Quadratic Invariance for Delay Patterns

Q/ if \& only if $T_{C} \leq T_{A}+T_{S}+T_{P}$
(Rotkowitz, Cogill \& Lall '10)

T_{C} : communication delay
T_{A} : actuation delay
T_{S} : sensing delay
T_{P} : propagation delay

No incentive to "signal through the plant"

Distributed Optimal Control Theory

regulated

$\operatorname{minimize}_{Q} \quad\left\|P_{z w}+P_{z u} Q P_{y w}\right\|$
s.t. $\quad Q$ stable \& causal
$Q \in \mathcal{S}$
Distributed constraint

Distributed Optimal Control Theory

Outline two recent results in H2 (LQG) distributed control:

1) two player nested information structures (Lessard \& Lall '12)
2) strongly connected communication graphs (Lamperski \& Doyle '13)

To reduce to finite dimensional solution: exploit structure to find centralized sub-problems + some other stuff

Other approaches : poset causal systems, finite subspace approximations, SDP based solutions

Two Player Nested Structure

Player 1 measures y_{1} and chooses u_{1}
Player 2 measures y_{1}, y_{2} and chooses u_{2}

Lower block triangular structure

$$
P_{y u}=\left[\begin{array}{cc}
* & 0 \\
* & *
\end{array}\right] \quad K=\left[\begin{array}{cc}
* & 0 \\
* & *
\end{array}\right]
$$

Two Player Nested Structure

How can we exploit lower block triangular structure to reduce to centralized problems?

Sweep stabilization issues, etc. under the rug see Lessard \& Lall TAC '14 for details

$$
\begin{array}{cc}
\underset{Q}{\operatorname{minimize}} & \left\|P_{z w}+P_{z u} Q P_{u w}\right\|_{\mathcal{H}_{2}}^{2} \\
\text { subject to } & Q \text { stable and lower } \\
P_{y u}=\left[\begin{array}{ll}
* & 0 \\
* & *
\end{array}\right] \quad K=\left[\begin{array}{cc}
* & 0 \\
* & *
\end{array}\right]
\end{array}
$$

Player 1 measures y_{1} and chooses u_{1} Player 2 measures y_{1}, y_{2} and chooses u_{2}

Two Player Nested Structure

How can we exploit lower block triangular structure to reduce to centralized problems?
$\left[\begin{array}{cc}Q_{11} & 0 \\ Q_{12} & Q_{22}\end{array}\right]=E_{1} Q_{11} E_{1}^{\top}+E_{2}\left[\begin{array}{ll}Q_{12} & Q_{22}\end{array}\right]=\left[\begin{array}{l}Q_{11} \\ Q_{12}\end{array}\right] E_{1}^{\top}+E_{2} Q_{22} E_{2}^{\top}$
Centralized!!!

Two Player Nested Structure

How can we exploit lower block triangular structure to reduce to centralized problems?
$\left[\begin{array}{cc}Q_{11} & 0 \\ Q_{12} & Q_{22}\end{array}\right]=E_{1} Q_{11} E_{1}^{\top}+E_{2}\left[\begin{array}{ll}Q_{12} & Q_{22}\end{array}\right]=\left[\begin{array}{l}Q_{11} \\ Q_{12}\end{array}\right] E_{1}^{\top}+E_{2} Q_{22} E_{2}^{\top}$

Fix Q_{11} and solve
Centralized!!!
$\underset{\left[Q_{12} Q_{22}\right]}{\operatorname{minimize}}\left\|\left(P_{z w}+P_{z u} E_{1} Q_{11} E_{1}^{\top} P_{u w}\right)+P_{z u} E_{2}\left[\begin{array}{ll}Q_{12} & Q_{22}\end{array}\right] P_{u w}\right\|_{\mathcal{H}_{2}}^{2}$ subject to $\left[\begin{array}{ll}Q_{12} & Q_{22}\end{array}\right]$ stable

To get optimal $\left[\begin{array}{ll}Q_{12}^{\#} & Q_{22}^{\#}\end{array}\right]$

Two Player Nested Structure

How can we exploit lower block triangular structure to reduce to centralized problems?
$\left[\begin{array}{cc}Q_{11} & 0 \\ Q_{12} & Q_{22}\end{array}\right]=E_{1} Q_{11} E_{1}^{\top}+E_{2}\left[\begin{array}{ll}Q_{12} & Q_{22}\end{array}\right]=\left[\begin{array}{l}Q_{11} \\ Q_{12}\end{array}\right] E_{1}^{\top}+E_{2} Q_{22} E_{2}^{\top}$

Fix Q_{22} and solve
Centralized!!!
minimize
$\left[\begin{array}{ll}Q_{11}^{H} & Q_{12}^{H}\end{array}\right]^{H}$ subject to

$$
\left[\begin{array}{ll}
Q_{11}^{H} & Q_{12}^{H}
\end{array}\right]^{H} \text { stable }
$$

To get optimal $\left[\begin{array}{l}Q_{11}^{*} \\ Q_{12}^{*}\end{array}\right]$

Two Player Nested Structure

How can we exploit lower block triangular structure to reduce to centralized problems?

By uniqueness of optimal solution

$$
Q_{o p t}=\left[\begin{array}{cc}
Q_{11}^{*} & 0 \\
Q_{12}^{*} & Q_{22}^{\#}
\end{array}\right]=\left[\begin{array}{cc}
Q_{11}^{*} & 0 \\
Q_{12}^{\#} & Q_{22}^{\#}
\end{array}\right]
$$

Main idea: use structure to get centralized problems, and then do some extra "stuff"

Generalizes to other nested topologies such as N-player chain (Lessard et al. '14, Tanaka and Parrilo '14)

Strongly Connected Communication Graphs

How can we exploit strongly connected structure to reduce to centralized problems?

$$
\mathcal{S}=\frac{1}{z}\left[\begin{array}{cccc}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
0 & 0 & * & 0 \\
0 & 0 & 0 & *
\end{array}\right] \oplus \frac{1}{z^{2}}\left[\begin{array}{cccc}
* & * & 0 & 0 \\
* & * & * & 0 \\
0 & * & * & * \\
0 & 0 & * & *
\end{array}\right] \oplus \frac{1}{z^{3}}\left[\begin{array}{llll}
* & * & * & 0 \\
* & * & * & * \\
* & * & * & * \\
0 & * & * & *
\end{array}\right] \oplus \frac{1}{z^{4}} \mathcal{R}_{p}
$$

Strongly Connected Communication Graphs

How can we exploit strongly connected structure to reduce to centralized problems?

$$
\begin{gathered}
\mathcal{S}=\mathcal{Y} \oplus \frac{1}{z^{N+1}} \mathcal{R}_{p} \\
Q=V \oplus U
\end{gathered}
$$

We can play the same game: rewrite Q and solve for U in terms of V

Strongly Connected Communication Graphs

How can we exploit strongly connected structure to reduce to centralized problems?

$$
Q=V \oplus U
$$

FIR filter V
Local action based on partial information

IIR component U : global action based on delayed global information

Current time

$$
\begin{aligned}
\underset{U}{\operatorname{minimize}} & \left\|P_{z w}+P_{z u} V P_{u w}+P_{z u} U P_{u w}\right\|_{\mathcal{H}_{2}}^{2} \\
\text { subject to } & U \in \frac{1}{z^{N+1}} \mathcal{H}_{2}
\end{aligned}
$$

Delayed but centralized: can get analytic solution in terms of V. Again some magic happens, and problem reduces to... (Lamperski \& Doyle '13 and '14)

Strongly Connected Communication Graphs

- Optimal controller has 2 regimes

FIR filter V^{*}	IIR component $U^{*}:$ global action		
based on delayed global information			
Local action based			
on partial information			$U^{*}=Q_{N}-W_{L} \mathbb{P}_{\frac{1}{z N+1}} \mathcal{H}_{2}\left(W_{L}^{-1} V W_{R}^{-1}\right) W_{R}$
:---:			

After $N+1$ steps: each node has access to global delayed state.

Key feature: Finite impulse response (FIR) filter V^{*} solves:

$$
\operatorname{minimize}_{V} \sum_{i=1}^{N}\left(\operatorname{Tr} G_{i}(V)\left(G_{i}(V)\right)^{\top}+2 \operatorname{Tr} G_{i}(V) T_{i}^{\top}\right)
$$

$$
\text { s.t. } V_{i} \in \mathcal{Y}_{i}
$$

Distributed Control

Large scale systems not amenable to centralized control

Idea: restrict information each controller has access to Positives: control laws are local, and hence scalable to implement.
Negatives: in general non-convex. Witsenhausen.

Distributed Control

Large scale systems not amenable to centralized control

Idea: restrict information each controller has access to Positives: control laws are local, and hence scalable to implement.
Negatives: in general non-convex. Witsenhausen.

Positives: with additional structure, regain convexity and finite dimensionality.

Distributed Control

Large scale systems not amenable to centralized control

Idea: restrict information each controller has access to Positives: control laws are local, and hence scalable to implement.
Negatives: in general non-convex. Witsenhausen.

Positives: with additional structure, regain convexity and finite dimensionality.
Negatives: had to give up scalability in the process.

Distributed Control

In all cases, optimal controller is as expensive to compute as centralized counter part

and

Can be even more difficult to implement!

What structure do we need to impose to maintain convexity and regain scalability?

Distributed Control

In all cases, optimal controller is as expensive to compute as centralized counter part

and

Can be even more difficult to implement!

What structure do we need to impose to maintain convexity and regain scalability?

LOCALIZABILITY

(Wang, M., You \& Doyle '13, Wang, M., \& Doyle '13)

Quadratic Invariance for Delay Patterns

Q/ if \& only if $T_{C} \leq T_{A}+T_{S}+T_{P}$
(Rotkowitz, Cogill \& Lall '10)

T_{C} : communication delay
T_{A} : actuation delay
T_{S} : sensing delay
T_{P} : propagation delay

No incentive to "signal through the plant"

Localizability

Localizability requires $T_{C}+T_{A}+T_{S} \leq T_{P}$

T_{C} : communication delay
T_{A} : actuation delay
T_{S} : sensing delay
T_{P} : propagation delay

Get ahead of disturbance and cancel it out

Localizability

Localizing Control Scheme

Get ahead of disturbance and cancel it out

Localizability

Spatio-temporal deadbeat control at each node

$$
\begin{aligned}
\underset{x[k], u[k]}{\operatorname{minimize}} & f(x[0: k], u[0: k]) \\
\text { subject to } & x[0]=e_{i} \\
& x[k+1]=A x[k]+B u[k] \\
& x[k] \in \mathcal{S}_{x} \\
& u[1: k] \in \mathcal{S}_{u} \\
& x[T]=0
\end{aligned}
$$

Localizability

Spatio-temporal deadbeat control at each node

$$
\begin{aligned}
\underset{x[k], u[k]}{\operatorname{minimize}} & f(x[0: k], u[0: k]) \\
\text { subject to } & x[0]=e_{i} \\
& x[k+1]=A x[k]+B u[k] \\
& x[k] \in \mathcal{S}_{x} \\
& u[1: k] \in \mathcal{S}_{u} \\
& x[T]=0
\end{aligned}
$$

Localizability

Spatio-temporal deadbeat control at each node

$$
\begin{array}{cll}
\underset{x[k], u[k]}{\operatorname{minimize}} & f(x[0: k], u[0: k]) & \text { Favorite convex cost } \\
\text { subject to } & x[0]=e_{i} & \\
& x[k+1]=A x[k]+B u[k] & \text { Initial disturbance } \\
& x[k] \in \mathcal{S}_{x} & \\
& u[1: k] \in \mathcal{S}_{u} & \\
& x[T]=0 &
\end{array}
$$

Localizability

Spatio-temporal deadbeat control at each node

$$
\begin{array}{cll}
\underset{x[k], u[k]}{\operatorname{minimize}} & f(x[0: k], u[0: k]) & \text { Favorite convex cost } \\
\text { subject to } & x[0]=e_{i} & \\
& x[k+1]=A x[k]+B u[k] & \text { Initial disturbance } \\
& x[k] \in \mathcal{S}_{x} & \text { Dynamics } \\
& u[1: k] \in \mathcal{S}_{u} & \\
& x[T]=0 &
\end{array}
$$

Localizability

Spatio-temporal deadbeat control at each node

$$
\begin{aligned}
\underset{x[k], u[k]}{\operatorname{minimize}} & f(x[0: k], u[0: k]) \\
\text { subject to } & x[0]=e_{i} \\
& x[k+1]=A x[k]+B u[k] \\
& x[k] \in \mathcal{S}_{x} \\
& u[1: k] \in \mathcal{S}_{u} \\
& x[T]=0
\end{aligned}
$$

Initial disturbance
Dynamics
Spatial constraints

Localizability

Spatio-temporal deadbeat control at each node

$$
\begin{aligned}
\underset{x[k], u[k]}{\operatorname{minimize}} & f(x[0: k], u[0: k]) \\
\text { subject to } & x[0]=e_{i} \\
& x[k+1]=A x[k]+B u[k] \\
& x[k] \in \mathcal{S}_{x} \\
& u[1: k] \in \mathcal{S}_{u} \\
& x[T]=0
\end{aligned}
$$

Favorite convex cost

Initial disturbance
Dynamics
Spatial constraints
Comm constraints

Localizability

Spatio-temporal deadbeat control at each node

$$
\begin{aligned}
\operatorname{minimize} & f(x[0: k], u[0: k]) \\
\text { subject to to } & x[0]=e_{i} \\
& x[k+1]=A x[k]+B u[k] \\
& x[k] \in \mathcal{S}_{x} \\
& u[1: k] \in \mathcal{S}_{u} \\
& x[T]=0
\end{aligned}
$$

Favorite convex cost

Initial disturbance
Dynamics
Spatial constraints
Comm constraints
Temporal constraints

Localizability

Spatio-temporal deadbeat control at each node

$$
\begin{aligned}
\underset{x[k], u[k]}{\operatorname{minimize}} & f(x[0: k], u[0: k]) \\
\text { subject to } & x[0]=e_{i} \\
& x[k+1]=A x[k]+B u[k] \\
& x[k] \in \mathcal{S}_{x} \\
& u[1: k] \in \mathcal{S}_{u} \\
& x[T]=0
\end{aligned}
$$

Favorite convex cost

Initial disturbance
Dynamics
Spatial constraints
Comm constraints
Temporal constraints

Localizability

Spatio-temporal deadbeat control at each node lets us restrict to sub-models for design/implementation

$$
\begin{array}{rll}
\underset{x^{i}[k], u^{i}[k]}{\operatorname{minimize}} & f\left(x^{i}[0: k], u^{i}[0: k]\right) & \text { Favorite convex cost } \\
\text { subject to } & x^{i}[0]=e_{i} & \text { linitial disturbance } \\
& x^{i}[k+1]=A^{i} x[k]+B^{i} u[k] & \begin{array}{l}
\text { Dynamics } \\
\\
\\
x^{i}[k] \in \mathcal{S}_{x}^{i} \\
\\
\\
u^{i}\left[1:: k \in \in \mathcal{S}_{u}^{i}\right. \\
\\
x^{i}[T]=0
\end{array} \\
\text { Spatial constraints } \\
\left(A^{i}, B^{i}\right) & &
\end{array}
$$

Localizability

LQR cost splits along disturbances:
Completely Local Globally Optimal Solution

$$
\begin{array}{rll}
\underset{x^{i}[k], u^{i}[k]}{\operatorname{minimize}} & \left\|x^{i}[0: k]\right\|_{2}^{2}+\left\|u^{i}[0: k]\right\|_{2}^{2} & \text { LQR cost } \\
\text { subject to } & x^{i}[0]=e_{i} & \\
& x^{i}[k+1]=A^{i} x[k]+B^{i} u[k] & \text { Initial dist } \\
& x^{i}[k] \in \mathcal{S}_{x}^{i} & \text { Spnamics } \\
& u^{i}[1: k] \in \mathcal{S}_{u}^{i} & \text { Comm cor } \\
& x^{i}[T]=0 & \text { Temporal } \\
\left(A^{i}, B^{i}\right) & &
\end{array}
$$

Localizability

Extensions in the works for

Output feedback

and

Non-separable cost functions
$\left(A^{i}, B^{i}\right)$

Roadmap for 1st $^{\text {st }}$ Part

DC OPF

- Connections to positive systems
- Connections to Sum of Squares Programming \& Polynomial Optimization

Distributed Optimal Control

- Why it's hard: Witsenhausen
- How can we make it tractable: Quadratic Invariance
- How can we make it scalable: Localizable Systems

Setup for $2^{\text {nd }}$ Part

Break

Recap of $1^{\text {st }}$ Part

"Easy" problems are convex and scalable

Interesting problems are large scale and non-convex

Solution: Exploit Structure to Relax

Indefinite QPs are hard in general
DC OPF is tractable because of Metzler structure

Distributed control is hard in general
Computationally tractable if we have Ql
Scalable if we have localizability

What have we swept under the rug?

Made lots of assumptions for distributed control

Can communicate with infinite bandwidth

Communication occurs with fixed delays

Have a known system model with known structure

Have a control architecture (actuation, sensing, communication)

Roadmap for $2^{\text {nd }}$ Part

Networked Control Systems

- Single plant/controller: connections with information theory
- Approaches for extending to distributed control

Varying Delays

- Recent progress

Distributed System Identification

- Known structure
- Unknown structure

Control Architecture Design

Roadmap for $2^{\text {nd }}$ Part

Networked Control Systems

- Single plant/controller: connections with information theory
- Approaches for extending to distributed control

Varying Delays

- Recent progress

Distributed System Identification

- Known structure
- Unknown structure

Control Architecture Design
Emphasize Connections to Optimization \& Statistics

Networked Control Systems

Classical control system

Networked Control Systems

Classical control system

Networked Control Systems

Networked control system

Adding realistic channels leads to interplay between information and control theory

Networked Control Systems

Stabilization well understood
Channel Capacity \geq Plant "instability"

Networked Control Systems

Stabilization well understood
Channel Capacity \geq Plant "instability"
Plant "instability": Entropy $H=\sum_{\left|\lambda_{j}\right| \geq 1} \log _{2} \lambda_{j}$

Networked Control Systems

Stabilization well understood

Channel Capacity \geq Plant "instability" Plant "instability": Entropy $H=\sum_{\left|\lambda_{j}\right| \geq 1} \log _{2} \lambda_{j}$

Examples

Channel Type	Condition	Reference
Limited data rate R	$R>H$	Nair \& Evans '04
SNR constrained AWGN	$\frac{C}{\log _{2} e}>\sum_{\lambda_{i}: \operatorname{Re} \lambda_{i}>0} \operatorname{Re} \lambda_{i}$	Braslavsky, Freudenberg '07
Noisy and quantized	Anytime reliability $>H$	Sahai and Mitter '06

Networked Control Systems

Stabilization well understood

Channel Capacity \geq Plant "instability" Plant "instability": Entropy $H=\sum_{\left|\lambda_{j}\right| \geq 1} \log _{2} \lambda_{j}$

Examples

Channel Type	Condition	Reference
Limited data rate R	$R>H$	Nair \& Evans '04
SNR constrained AWGN	$\frac{C}{\log _{2} e}>\sum_{\lambda_{i}: \operatorname{Re} \lambda_{i}>0} \operatorname{Re} \lambda_{i}$	Braslavsky, Freudenberg '07
Noisy and quantized	Anytime reliability $>H$	Sahai and Mitter '06

Extensions to varying rates (Minero et. al '09, '13) Tree codes for achieving anytime reliability (Sukhavasi \& Hassibi ‘13)

Networked Control Systems

Performance limits well understood Martins and Dahleh '08

No channel gives us standard* Bode integral bound $\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log (S(\omega)) d \omega \geq \sum_{i=1}^{n} \max \left\{0, \log \left|\lambda_{i}(A)\right|\right\}$

Networked Control Systems

Performance limits well understood Martins and Dahleh '08

No channel gives us standard* Bode integral bound $\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log (S(\omega)) d \omega \geq \sum_{i=1}^{n} \max \left\{0, \log \left|\lambda_{i}(A)\right|\right\}$

Channel in the loop hurts us
$\frac{1}{2 \pi} \int_{-\pi}^{\pi} \min \{0, \log (S(\omega))\} d \omega \geq \sum_{i=1}^{n} \max \left\{0, \log \left|\lambda_{i}(A)\right|\right\}-C_{f}$

Networked Control Systems

Performance limits well understood Martins and Dahleh ‘08

No channel gives us standard* Bode integral bound $\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log (S(\omega)) d \omega \geq \sum_{i=1}^{n} \max \left\{0, \log \left|\lambda_{i}(A)\right|\right\}$

Channel in the loop hurts us
$\frac{1}{2 \pi} \int_{-\pi}^{\pi} \min \{0, \log (S(\omega))\} d \omega \geq \sum_{i=1}^{n} \max \left\{0, \log \left|\lambda_{i}(A)\right|\right\}-C_{f}$

Bode:

$$
S 1+S 3-S 2 \geq \sum_{i=1}^{n} \max \left\{0, \log \mid \lambda_{i}(A)\right\}
$$

New Inequality:

$$
S 2 \leq C_{f}-\sum_{i=1}^{n} \max \left\{0, \log \mid \lambda_{i}(A)\right\}
$$

Networked Control Systems

Achieving these limits much less well understood

Networked Control Systems

Achieving these limits much less well understood

Results exist for special cases

Networked Control Systems

Achieving these limits much less well understood

Results exist for special cases

Even for a single plant and controller optimal control is difficult under noisy channels

Networked Control Systems

Achieving these limits much less well understood

Results exist for special cases

Even for a single plant and controller optimal control is difficult under noisy channels

Modeling assumption: underlying channel manifests as possibly unbounded and varying delays

Varying Delays

Two player LQR state feedback with varying delay has explicit solution

Varying Delays

Two player LQR state feedback with varying delay has explicit solution

if delay pattern leads to partially nested information pattern throughout

Varying Delays

Two player LQR state feedback with varying delay has explicit solution

if delay pattern leads to partially nested information pattern throughout

Dynamic Programming based solution
(M. \& Doyle '13, M., Lamperski \& Doyle '14)

Builds off of Lamperski \& Doyle '12, Lamperski \& Lessard '13

Varying Delays

Extensions to more general topologies?
Will require Dynamic Programming based solutions

Varying Delays

Extensions to more general topologies?
Will require Dynamic Programming based solutions
These should be available soon, as sufficient statistics are now well understood
"Sufficient statistics for linear control strategies in decentralized systems with partial history sharing, Mahajan \& Nayyar", '14
"Sufficient statistics for team decision problems", Wu (\& Lall), '13

Varying Delays

Extensions to more general topologies?
Will require Dynamic Programming based solutions
These should be available soon, as sufficient statistics are now well understood
"Sufficient statistics for linear control strategies in decentralized systems with partial history sharing, Mahajan \& Nayyar", '14
"Sufficient statistics for team decision problems", Wu (\& Lall), '13

Unbounded delays?

Varying Delays

Extensions to more general topologies?
Will require Dynamic Programming based solutions
These should be available soon, as sufficient statistics are now well understood
"Sufficient statistics for linear control strategies in decentralized systems with partial history sharing, Mahajan \& Nayyar", '14
"Sufficient statistics for team decision problems", Wu (\& Lall), '13
Unbounded delays?
Progress is promising on both the coding and control side

Roadmap for $2^{\text {nd }}$ Part

Networked Control Systems

- Single plant/controller: connections with information theory
- Approaches for extending to distributed control

Varying Delays

- Recent progress

Distributed System Identification

- Known structure
- Unknown structure

Control Architecture Design
Emphasize Connections to Optimization \& Statistics

SysID with Known Structure

Traditional subspace methods destroy structure
A good algorithm leverages structure rather than ignoring it

SysID with Known Structure

Traditional subspace methods destroy structure
A good algorithm leverages structure rather than ignoring it

We want convexity and scalability

SysID with Known Structure

Traditional subspace methods destroy structure
A good algorithm leverages structure rather than ignoring it

We want convexity and scalability

Can we exploit known structure to get an algorithm that is local (scalable) and convex

SysID with Known Structure

Quick Review of Basic SysID

Dynamics
$\begin{aligned} x_{t+1} & =A x_{t}+B u_{t} \\ y_{t} & =C x_{t}+D u_{t}\end{aligned}$

Input/output
$y_{t}=\sum_{\tau=0}^{t} G_{\tau} u_{t-\tau}$
$G_{0}=D, G_{\tau}=C A^{\tau-1} B$

SysID with Known Structure

Quick Review of Basic SysID

Dynamics
Input/output

$$
\begin{aligned}
& \begin{array}{c}
x_{t+1}=A x_{t}+B u_{t} \\
y_{t}=\left[x_{t}+D u_{t}\right. \\
Y_{N}=\left[\begin{array}{llll}
y_{N-M} & y_{t}=\sum_{\tau=0}^{t} G_{\tau} u_{t-\tau} \\
y_{N-(M-1)} & \cdots & y_{N}
\end{array}\right] \quad G=\left[\begin{array}{llll}
G_{0} & G_{1} & \cdots & G_{r}
\end{array}\right] \\
U_{N, M, r}=\left[\begin{array}{cccc}
u_{N-M} & u_{N-(M-1)} & \cdots u_{N} & \\
u_{N-(M+1)} & u_{N-M} & \cdots & u_{N-1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N-(M+r)} & u_{N-(M+r-1)} & \cdots u_{N-r}
\end{array}\right]
\end{array} \\
& \begin{array}{c}
x_{t+1}=A x_{t}+B u_{t} \\
y_{t}=\left[x_{t}+D u_{t}\right. \\
Y_{N}=\left[\begin{array}{llll}
y_{N-M} & y_{t}=\sum_{\tau=0}^{t} G_{\tau} u_{t-\tau} \\
y_{N-(M-1)} & \cdots & y_{N}
\end{array}\right] \quad G=\left[\begin{array}{llll}
G_{0} & G_{1} & \cdots & G_{r}
\end{array}\right] \\
U_{N, M, r}=\left[\begin{array}{cccc}
u_{N-M} & u_{N-(M-1)} & \cdots u_{N} & \\
u_{N-(M+1)} & u_{N-M} & \cdots & u_{N-1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N-(M+r)} & u_{N-(M+r-1)} & \cdots u_{N-r}
\end{array}\right]
\end{array} \\
& y_{t}=\sum_{\tau=0}^{t} G_{\tau} u_{t-\tau} \\
& G_{0}=D, G_{\tau}=C A^{\tau-1} B \\
& Y_{N}=\left[\begin{array}{llll}
y_{N-M} & y_{N-(M-1)} & \cdots & y_{N}
\end{array}\right] \quad G=\left[\begin{array}{llll}
G_{0} & G_{1} & \cdots & G_{r}
\end{array}\right] \\
& U_{N, M, r}=\left[\begin{array}{cccc}
u_{N-M} & u_{N-(M-1)} & \cdots u_{N} & \\
u_{N-(M+1)} & u_{N-M} & \cdots u_{N-1} & \\
\vdots & \vdots & \ddots & \vdots \\
u_{N-(M+r)} & u_{N-(M+r-1)} & \cdots u_{N-r} &
\end{array}\right]
\end{aligned}
$$

SysID with Known Structure

Quick Review of Basic SysID

$$
\begin{gathered}
\text { Dynamics } \\
x_{t+1}=\begin{array}{lll}
\text { Input/output } \\
y_{t}= & A x_{t}+B u_{t} & \\
y_{t}=\sum_{\tau=0}^{t} G_{\tau} u_{t-\tau} \\
& & G_{0}=D, G_{\tau}=C A^{\tau-1} B
\end{array} \\
Y_{N}=\left[\begin{array}{lllll}
y_{N-M} & y_{N-(M-1)} & \cdots & y_{N}
\end{array}\right] \quad G=\left[\begin{array}{llll}
G_{0} & G_{1} & \cdots & G_{r}
\end{array}\right] \\
U_{N, M, r}=\left[\begin{array}{cccc}
u_{N-M} & u_{N-(M-1)} & \cdots u_{N} & \\
u_{N-(M+1)} & u_{N-M} & \cdots u_{N-1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N-(M+r)} & u_{N-(M+r-1)} & \cdots u_{N-r}
\end{array}\right]
\end{gathered}
$$

I/O identification: $\quad Y_{N}=G U_{N, M, r} \Longrightarrow G=Y_{N} U_{N, M, r}^{\dagger}$

SysID with Known Structure

Quick Review of Basic Realization

Given G_{0}, \ldots, G_{r}, build Hankel matrix:

$$
\mathcal{H}(G)=\left[\begin{array}{cccc}
G_{1} & G_{2} & \cdots & G_{r / 2} \\
G_{2} & G_{3} & . \cdot & G_{r / 2+1} \\
\vdots & . \cdot & \ddots & \vdots \\
G_{r / 2} & G_{r / 2+1} & \cdots & G_{r}
\end{array}\right]
$$

If system order n is less than r then $\operatorname{rank}(H(G))=n$, and (A, C) can be identified via SVD, (B, D) can be identified via least-squares.

SysID with Known Structure

Combine to deal with process and observation noise

$$
\begin{aligned}
\underset{G_{0}, \ldots, G_{r}}{\operatorname{minimize}} & \operatorname{rank}(\mathcal{H}(G)) \\
\text { subject to } & \left\|Y_{N}-G U_{N, M, r}\right\|_{F}^{2} \leq \delta^{2}
\end{aligned}
$$

SysID with Known Structure

Combine to deal with process and observation noise

More on why this is the right thing to do later.

SysID with Known Structure

Easy case: we can measure all interconnecting signals

Low-Rank and Low-Order Decompositions for Local System Identification, M. \& Rantzer '14

SysID with Known Structure

Easy case: we can measure all interconnecting signals

$$
\begin{aligned}
\underset{G_{0}, \ldots, G_{r}}{\operatorname{minimize}} & \|\mathcal{H}(G)\|_{*} \\
\text { subject to } & \left\|Y_{N}-G U_{N, M, r}\right\|_{F}^{2} \leq \delta^{2}
\end{aligned}
$$

Where now U consists of local inputs and measured interconnecting signals.

SysID with Known Structure

Easy case: we can measure all interconnecting signals

$$
\begin{aligned}
\underset{G_{0}, \ldots, G_{r}}{\operatorname{minimize}} & \|\mathcal{H}(G)\|_{*} \\
\text { subject to } & \left\|Y_{N}-G U_{N, M, r}\right\|_{F}^{2} \leq \delta^{2}
\end{aligned}
$$

Where now U consists of local inputs and measured interconnecting signals.

Need to get neighbors to inject excitation as well.

SysID with Known Structure

Tricky case: we miss some interconnecting signals

Low-Rank and Low-Order Decompositions for Local System Identification, M. \& Rantzer '14

SysID with Known Structure

Tricky case: we miss some interconnecting signals

$$
y_{t}=\sum_{\tau=0}^{t} G_{\tau} u_{t-\tau}+H_{\tau} u_{t-\tau}
$$

SysID with Known Structure

Tricky case: we miss some interconnecting signals

$$
y_{t}=\sum_{\tau=0}^{t} \overbrace{\begin{array}{c}
\text { Low-order } \\
\text { but full rank }
\end{array}}^{G_{\tau} u_{t-\tau}}+\underbrace{H_{\tau} u_{t-\tau}}_{\begin{array}{c}
\text { High-order } \\
\text { but low rank }
\end{array}}
$$

SysID with Known Structure

Tricky case: we miss some interconnecting signals

$$
y_{t}=\sum_{\tau=0}^{t} \sqrt{\begin{array}{c}
\text { Low-order } \\
\text { but full rank }
\end{array}}+\underset{\begin{array}{c}
\text { High-order } \\
\text { but low rank }
\end{array}}{H_{\tau} u_{t-\tau} u_{t-\tau}}
$$

Can we separate out the two components?

SysID with Known Structure

Tricky case: we miss some interconnecting signals

$$
y_{t}=\sum_{\tau=0}^{t} \overbrace{\begin{array}{c}
\text { Low-order } \\
\text { but full rank }
\end{array}}^{G_{\tau} u_{t-\tau}}+\underbrace{H_{\tau} u_{t-\tau}}_{\begin{array}{c}
\text { High-order } \\
\text { but low rank }
\end{array}}
$$

Can we separate out the two components?

$$
\begin{aligned}
\operatorname{minimize}_{\left\{G_{k}\right\},\left\{H_{k}\right\}} & \operatorname{rank}(\mathcal{H}(G)) \\
\text { subject to } & \left\|Y_{N}-(G+H) U_{N, M, r}\right\|_{F}^{2} \leq \delta^{2} \\
& \operatorname{rank}\left(H\left(e^{j \omega}\right)\right) \leq k
\end{aligned}
$$

SysID with Known Structure

Tricky case: we miss some interconnecting signals

$$
y_{t}=\sum_{\tau=0}^{t} \sqrt{\begin{array}{c}
\text { Low-order } \\
\text { but full rank }
\end{array}}+\underset{\begin{array}{c}
\text { High-order } \\
\text { but low rank }
\end{array}}{H_{\tau} u_{t-\tau} u_{t-\tau}}
$$

Can we separate out the two components?

$$
\begin{aligned}
\operatorname{minimize}_{\left\{G_{k}\right\},\left\{H_{k}\right\}} & \| \mathcal{H}(G)) \|_{*} \\
\text { subject to } & \left\|Y_{N}-(G+H) U_{N, M, r}\right\|_{F}^{2} \leq \delta^{2} \\
& \left\|H\left(e^{j \omega}\right)\right\|_{*} \leq k
\end{aligned}
$$

SysID with Unknown Structure

Tricky case: we miss some interconnecting signals

$$
y_{t}=\sum_{\tau=0}^{t} \underset{\begin{array}{c}
\text { Low-order } \\
\text { but full rank }
\end{array}}{G_{\tau} u_{t-\tau}}+\underset{\begin{array}{c}
\text { High-order } \\
\text { but low rank }
\end{array}}{H_{\tau} u_{t-\tau}}
$$

Key feature:

exploiting structure to de-convolve response

$$
\begin{aligned}
\underset{\left\{G_{k}\right\},\left\{H_{k}\right\}}{\operatorname{minimize}} & \| \mathcal{H}(G)) \|_{*} \\
\text { subject to } & \left\|Y_{N}-(G+H) U_{N, M, r}\right\|_{F}^{2} \leq \delta^{2} \\
& \left\|H\left(e^{j \omega}\right)\right\|_{*} \leq k
\end{aligned}
$$

Roadmap for $2^{\text {nd }}$ Part

Networked Control Systems

- Single plant/controller: connections with information theory
- Approaches for extending to distributed control

Varying Delays

- Recent progress

Distributed System Identification

- Known structure
- Unknown structure

Control Architecture Design
Emphasize Connections to Optimization \& Statistics

Latent Variables in Graphical Models
Will consider simpler case of identifying structure in Graphical Models

$$
X \sim \mathcal{N}(0, \Sigma)
$$

X_{i} and X_{j}
independent conditioned
on other vars

Latent Variables in Graphical Models

Will consider simpler case of identifying structure in Graphical Models

$$
X \sim \mathcal{N}(0, \Sigma)
$$

X_{i} and X_{j}
independent conditioned on other vars
$\left(\Sigma^{-1}\right)_{i j}=0$

$$
\Sigma^{-1}=\left[\begin{array}{ccccc}
* & 0 & 0 & 0 & * \\
0 & * & 0 & 0 & * \\
0 & 0 & * & 0 & * \\
0 & 0 & 0 & * & * \\
* & * & * & * & *
\end{array}\right]
$$

Latent Variables in Graphical Models

Traditional estimation procedure

Collect samples X^{1}, \ldots, X^{N}

Build sample covariance matrix

$$
\hat{\Sigma}=\frac{1}{N} \sum_{i=1}^{N}\left(X^{i}\right)\left(X^{i}\right)^{\top}
$$

For $N>n$, sample covariance is invertible.

Threshold $\hat{\Sigma}^{-1}$ to identify structure

Latent Variables in Graphical Models

If we know model is sparse a priori

Collect samples X^{1}, \ldots, X^{N}

Build sample covariance matrix

$$
\hat{\Sigma}=\frac{1}{N} \sum_{i=1}^{N}\left(X^{i}\right)\left(X^{i}\right)^{\top}
$$

For $N<n$, solve

$$
\underset{K}{\operatorname{minimize}} \operatorname{Tr} \hat{\Sigma} K-\log \operatorname{det} K+\lambda\|K\|_{0}
$$

Latent Variables in Graphical Models

If we know model is sparse a priori

Collect samples X^{1}, \ldots, X^{N}

Build sample covariance matrix

$$
\hat{\Sigma}=\frac{1}{N} \sum_{i=1}^{N}\left(X^{i}\right)\left(X^{i}\right)^{\top}
$$

For $N<n$, solve

$$
\underset{K}{\operatorname{minimize}} \operatorname{Tr} \hat{\Sigma} K-\log \operatorname{det} K+\lambda\|K\|_{1}^{1}
$$

Latent Variables in Graphical Models

If we know model is sparse a priori

Collect samples X^{1}, \ldots, X^{N}

Build sample covariance matrix

$$
\hat{\Sigma}=\frac{1}{N} \sum_{i=1}^{N}\left(X^{i}\right)\left(X^{i}\right)^{\top}
$$

For $N<n$, solve

This works! Banerjee et al. ‘06, Ravikumar et al. ’08, ...

Latent Variables in Graphical Models

But what if we miss a variable?

Latent Variables in Graphical Models

But what if we miss a variable?

Latent Variables in Graphical Models

But what if we miss a variable?

Latent Variables in Graphical Models

But what if we miss a variable?

$$
\begin{aligned}
\Sigma & =\left[\begin{array}{cc}
\Sigma_{O} & \Sigma_{O, H} \\
\Sigma_{H, O} & \Sigma_{H, H}
\end{array}\right] \\
(\Sigma)^{-1} & =K=\left[\begin{array}{cc}
K_{O} & K_{O, H} \\
K_{H, O} & K_{H, H}
\end{array}\right]
\end{aligned}
$$

Latent Variables in Graphical Models

But what if we miss a variable?

$$
\begin{aligned}
& \Sigma=\left[\begin{array}{cc}
\Sigma_{O} & \Sigma_{O, H} \\
\Sigma_{H, O} & \Sigma_{H, H}
\end{array}\right] \\
&(\Sigma)^{-1}=K=\left[\begin{array}{cc}
K_{O} & K_{O, H} \\
K_{H, O} & K_{H, H}
\end{array}\right] \\
&\left(\Sigma_{O}\right)^{-1}=\underset{\uparrow}{K_{O}}-K_{O, H} K_{H}^{-1} K H, O \\
& \text { Sparse } \uparrow \\
& \text { Low-rank }
\end{aligned}
$$

Latent Variables in Graphical Models

But what if we miss a variable?

$$
\begin{aligned}
\Sigma & =\left[\begin{array}{cc}
\Sigma_{O} & \Sigma_{O, H} \\
\Sigma_{H, O} & \Sigma_{H, H}
\end{array}\right] \\
(\Sigma)^{-1} & =K=\left[\begin{array}{cc}
K_{O} & K_{O, H} \\
K_{H, O} & K_{H, H}
\end{array}\right]
\end{aligned}
$$

$\underset{S}{\operatorname{minimize}}$
S, L subject to $\quad S-L \succ 0, L \succeq 0$

This works! Chandrasekaran, Parrilo \& Willsky '12

Latent Variables in Graphical Models

But what if we miss a variable?

$$
\Sigma=\left[\begin{array}{cc}
\Sigma_{O} & \Sigma_{O, H} \\
\Sigma_{H, O} & \Sigma_{H, H}
\end{array}\right]
$$

exploiting structure to de-convolve response

$\underset{S, L}{\operatorname{minimize}} \operatorname{Tr} \hat{\Sigma}_{O}(S-L)-\log \operatorname{det}(S-L)+\lambda\|S\|_{1}+\gamma\|L\|_{*}$ subject to $\quad S-L \succ 0, L \succeq 0$

This works! Chandrasekaran, Parrilo \& Willsky '12

Roadmap for $2^{\text {nd }}$ Part

Networked Control Systems

- Single plant/controller: connections with information theory
- Approaches for extending to distributed control

Varying Delays

- Recent progress

Distributed System Identification

- Known structure
- Unknown structure

Control Architecture Design
Emphasize Connections to Optimization \& Statistics

Control Architecture Design

In SysID, induced structure in solution to identify models

Can we induce structure to design control architectures?

Control Architecture Design

In SysID, induced structure in solution to identify models

Can we induce structure to design control architectures?

Communication Delay Design
\&

Actuator placement

Control Architecture Design

In SysID, induced structure in solution to identify models

Can we induce structure to design control architectures?

$$
\begin{aligned}
& \text { Communication Delay Design } \\
& \& \&
\end{aligned}
$$

Actuator placement

Key Feature: Convex Co-Design Procedure

Comm Delay Co-Design

$$
\operatorname{minimize}_{V} \sum_{i=1}^{N}\left(\operatorname{Tr} G_{i}(V)\left(G_{i}(V)\right)^{\top}+2 \operatorname{Tr} G_{i}(V) T_{i}^{\top}\right)
$$

$$
\text { s.t. } V_{i} \in \mathcal{Y}_{i}
$$

FIR filter V^{*}	IIR component $U^{*}:$ global action based on delayed global information
Local action based on partial information$U^{(1+1)}=Q_{N}-W_{L} \mathbb{P}_{\frac{1}{z N+1}} \mathcal{H}_{2}\left(W_{L}^{-1} V W_{R}^{-1}\right) W_{R}$	

Comm Delay Co-Design

$$
\operatorname{minimize}_{V} \sum_{i=1}^{N}\left(\operatorname{Tr} G_{i}(V)\left(G_{i}(V)\right)^{\top}+2 \operatorname{Tr} G_{i}(V) T_{i}^{\top}\right)
$$

$$
\text { s.t. } V_{i} \in \mathcal{Y}_{i}
$$

- Entire decentralized nature captured in V

Comm Delay Co-Design

minimize $_{V} \sum_{i=1}^{N}\left(\operatorname{Tr} G_{i}(V)\left(G_{i}(V)\right)^{\top}+2 \operatorname{Tr} G_{i}(V) T_{i}^{\top}\right)$
s.t. \boldsymbol{y}_{i}

- Entire decentralized nature captured in V
- Remove constraints

Comm Delay Co-Design

$\operatorname{minimize}_{V} \sum_{i=1}^{N}\left(\operatorname{Tr} G_{i}(V)\left(G_{i}(V)\right)^{\top}+2 \operatorname{Tr} G_{i}(V) T_{i}^{\top}\right)+\lambda\|V\|_{\mathcal{A}}$ s.t. $V \psi_{i}$

- Entire decentralized nature captured in V
- Remove constraints
- Add penalty to induce simple structure

Comm Delay Co-Design

$\operatorname{minimize}_{V} \sum_{i=1}^{N}\left(\operatorname{Tr} G_{i}(V)\left(G_{i}(V)\right)^{\top}+2 \operatorname{Tr} G_{i}(V) T_{i}^{\top}\right)+\lambda\|V\|_{\mathcal{A}}$ s.t. $V \psi_{i}$

- Entire decentralized nature captured in V
- Remove constraints
- Add penalty to induce simple structure
- What kind of structure in V?
- How to induce it in a convex way?

Main Tool: Atomic Norms

$$
\|X\|_{\mathcal{A}}:=\inf \{t>0 \mid X \in t \operatorname{conv}(\mathcal{A})\}
$$

"good" graphs

[Chandrasekaran-Recht-Parrilo-Willsky]

The Graph Enhancement "Norm"

Designed communication graph should

1. Satisfy tractability requirements (QI)
2. Be strongly connected (SC)
3. Be simple
4. Yield acceptable closed loop performance

Insight: Adjacency matrices of graphs satisfying 1 and 2 are closed under addition.

Approach: Minimize structure inducing norm subject to performance constraint

The Graph Enhancement "Norm"

Start with base that is QI and SC

$$
\begin{aligned}
& C_{1} \longleftrightarrow C_{2} \longleftrightarrow C_{3} \longleftrightarrow C_{4} \\
& \mathcal{S}=\frac{1}{z}\left[\begin{array}{cccc}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
0 & 0 & * & 0 \\
0 & 0 & 0 & *
\end{array}\right] \oplus \frac{1}{z^{2}}\left[\begin{array}{cccc}
* & * & 0 & 0 \\
* & * & * & 0 \\
0 & * & * & * \\
0 & 0 & * & *
\end{array}\right] \oplus \frac{1}{t=-1} \begin{array}{c}
{\left[\begin{array}{cccc}
* & * & * & 0 \\
* & * & * & * \\
* & * & * & * \\
0 & * & * & *
\end{array}\right]}
\end{array} \oplus \frac{1}{z^{4}} \mathcal{H}_{2}
\end{aligned}
$$

Add shortcuts

$$
\begin{gathered}
\mathcal{S}=\frac{1}{z}\left[\begin{array}{cccc}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
0 & 0 & * & 0 \\
0 & 0 & 0 & *
\end{array}\right] \oplus C_{2} \longleftrightarrow C_{3} \longleftrightarrow\left[\begin{array}{cccc}
* & * & * & 0 \\
t=-1
\end{array}\right) \stackrel{C_{4}}{z^{2}}\left[\begin{array}{ccc}
* \\
* & * & * \\
0 & 0 & * \\
t=-2
\end{array}\right] \oplus \frac{1}{z^{3}}\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
t=-3
\end{array}\right] \oplus \frac{1}{z^{4}} \mathcal{H}_{2}
\end{gathered}
$$

Project out base

$$
a_{13}=\frac{1}{z}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \oplus \frac{1}{z^{2}}\left[\begin{array}{cccc}
0 & 0 & * & 0 \\
0 & 0 & 0 & 0 \\
* & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \oplus \frac{1}{z^{3}}\left[\begin{array}{cccc}
0 & 0 & 0 & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
* & 0 & 0 & 0
\end{array}\right]
$$

The Graph Enhancement "Norm"

Special case of group norm with overlap [Jacob-Obozinski-Vert]

$$
\begin{gathered}
\|x\|_{\mathcal{A}}=\min _{x_{1}, x_{2}}\left\|x_{1}\right\|_{2}+\left\|x_{2}\right\|_{2} \\
\text { subject to } \\
\sum x_{i}=x \\
\operatorname{supp}\left(x_{i}\right) \subset \operatorname{supp}\left(a_{i}\right) \\
\mathcal{A}=\{[*, *, 0],[0, *, *]\}
\end{gathered}
$$

Convex hull of low dimensional unit disks

Communication Delay Co-Design

Theorem [N.M. CDC '13, TCNS '14] Solving

Designed norm

Tuning
param
yields a "simple" SC and Ql communication graph

Centralized norm satisfying a priori performance bounds.

Proof is a synthesis of results from Lamperski \& Doyle '12; Rotkowitz, Cogill \& Lall '10; and Chandrasekaran et al. '12.

Communication Delay Co-Design

Closed Loop Norm vs. \# Links

Actuator Regularization

Goal

Choose which actuators we need

Approach

$$
\begin{array}{r}
\operatorname{minimize}_{Q}\left\|P_{z w}+P_{z u} Q P_{y w}\right\| \\
\text { s.t. } Q \text { stable } \& \text { causal }
\end{array}
$$

Actuator Regularization

Goal

Choose which actuators we need

Approach

Assume B is block-diagonal.

$$
\begin{array}{r}
\operatorname{minimize}_{Q}\left\|P_{z w}+P_{z u} Q P_{y w}\right\| \\
\text { s.t. } Q \text { stable } \& \text { causal }
\end{array}
$$

Then each block-row of Q corresponds to an actuator.

Actuator Regularization

Goal

Choose which actuators we need

Approach

Assume B is block-diagonal.

$$
\begin{array}{r}
\operatorname{minimize}_{Q}\left\|P_{z w}+P_{z u} Q P_{y w}\right\| \\
\text { s.t. } Q \text { stable \& causal }
\end{array}
$$

Then each block-row of Q corresponds to an actuator.

Atoms are controllers with one non-zero block-row.

Leads to "group norm without overlap"

Other Application Areas

Sparse static feedback design
A scalable formulation for engineering combination therapies for evolutionary dynamics of disease, Jonsson, Rantzer, Murray, ACC '14
Sparsity-promoting optimal control for a class of distributed systems, Fardad, Lin \& Jovanovic ACC '11
Design of optimal sparse feedback gains via the alternating direction method of multipliers, Lin, Fardad \& Jovanovic TAC '13

Sparse consensus

On identifying sparse representations of consensus networks, Dhingra, Lin, Fardad, and Jovanovic, IFAC DENCS '13
Fast linear iterations for distributed averaging, Xiao, Boyd SCL '04

Sparse synchronization

Design of optimal sparse interconnection graphs for synchronization of oscillator networks, Fardad, Lin, and Jovanovic, TAC '13 (Submitted)

Roadmap for $2^{\text {nd }}$ Part

Networked Control Systems

- Single plant/controller: connections with information theory
- Approaches for extending to distributed control

Varying Delays

- Recent progress

Distributed System Identification

- Known structure
- Unknown structure

Control Architecture Design
Emphasize Connections to Optimization \& Statistics

Regularization: A Success Story

- Regularization incredibly successful in model/system identification
- Basis pursuit [e.g. Donoho, Candes-Romberg-Tao, Tropp]
- Matrix completion [e.g. Candes-Recht, Recht-Fazel-Parrilo]
- Statistical regression [e.g. Wainwright, Ravikumar]
- System identification [e.g. Shah et al., Ljung]
- Common theme: exploit structure and "restricted well-posedness" to solve hard problems using convex methods.

well-posed on restricted support

Regularization in Inference/Model Selection

Inference/reconstruction $\quad y=A x^{*}(+\epsilon)$

- Minimum restricted gains, null space conditions (Gordon's escape through a mesh, Vershynin, Chadrasekaran et al., Tropp)
- Gives exact reconstruction conditions for no noise
- Estimation bounds for noisy case (no structure)

Regularization in Inference/Model Selection

Inference/reconstruction $\quad y=A x^{*}(+\epsilon)$

- Minimum restricted gains, null space conditions (Gordon's escape through a mesh, Vershynin, Chadrasekaran et al., Tropp)
- Gives exact reconstruction conditions for no noise
- Estimation bounds for noisy case (no structure)

Primal/Dual Certificates

- Use an "oracle", and show that oracle solution solves original problem
- Still based on restricted gains

Regularization for Design

$$
\operatorname{minimize}_{x} \quad\|C(x, y)\|+\lambda\|x\|_{\mathcal{A}}
$$

	Regularized Distributed Control	Model/System Identification
Priors	"Base" controller structure	Simple structure
Structure	Need to design subspace	Need to identify subspace
Computation	Convex optimization	Convex optimization
Cost	Closed-loop performance	Estimation/ prediction error
Design Product	Optimal controller and control architecture	Optimal estimate and/or predictor

Regularization for Design

So far:

Principled algorithmic connections

- Illustrated with co-design of communication topologies well suited to distributed control

Our goal now:

Theoretical connections

- Define and provide co-design approximation guarantees

How do we measure success?

For estimation/identification measured in terms of estimation and/or predictive power

For design
measured in terms of structure and approximation quality

To make things concrete, consider square loss and group norm

The Group Norm

With dual norm
$\left\|\frac{v_{2}}{v_{3}}\right\|_{v_{3}}^{v_{4}} \|_{\mathcal{G}, \infty}=\max \left\{\left\|\left|v_{1}\|,\| v_{2}\|\|,\right| v_{3}\right\|,\|\sqrt[v_{4}]{\|}\|\right\}$

Focus on Structure

$\mathcal{E}_{\mathcal{G}}$-support accurate

Recover a subset of the structure
\mathcal{G}-support accurate

Recover full structure

Accurate Approximations

$\operatorname{minimize}_{v} \frac{1}{2}\left\|y-\mathcal{L} \mathcal{E}_{\mathcal{G}}(v)\right\|_{F}^{2}+\lambda\|v\|_{\mathcal{G}}$

Assume:

$$
y=\mathcal{L} \mathcal{E}_{\mathcal{G}}\left(v_{\uparrow}^{*}\right)+\epsilon
$$

Nominal closed loop

Self-incoherence: minimum gain of \mathcal{L} on $\mathcal{G}^{*} \geq \alpha$
Corss-incoherence: maximum gain of \mathcal{L} from $\left(\mathcal{G}^{*}\right)^{\perp} \rightarrow \mathcal{G}^{*} \leq \gamma$

$$
\frac{\gamma}{\alpha} \leq \nu
$$

Total Incoherence

Support Accurate Approximations

Theorem [N.M. and V. Chandrasekaran, CDC '14]
Suppose previous assumptions hold, and $\left\|\mathcal{E}_{\mathcal{G}}^{+} \mathcal{L}^{+} \epsilon_{\mathcal{G}}\right\|_{\mathcal{G}, \infty} \leq(\kappa-1) \lambda$ for some $1 \leq \kappa<\frac{2}{(\nu+1)}$.
Then
Closed loop performance affects approximation error

1. The solution \hat{v} is $\mathcal{E}_{\mathcal{G}}$-support accurate, and
2. $\left\|\hat{v}-v^{*}\right\|_{\mathcal{G}, \infty} \leq \lambda\left(\frac{\kappa}{\alpha}\right)_{\leftarrow}$

Corollary

If $\left\|v_{g}^{*}\right\|>\lambda\left(\frac{\kappa}{\alpha}\right)$ for all $g \in \mathcal{G}^{*}$. Then \hat{v} is \mathcal{G}-support accurate.
only recover dominant control components

Support Accurate Approximations

Theorem [N.M. and V. Chandrasekaran, CDC '14]
Suppose previous assumptions hold, and $\left\|\mathcal{E}_{\mathcal{G}}^{+} \mathcal{L}^{+} \epsilon_{\Omega}\right\|_{\mathcal{G}, \infty} \leq(\kappa-1) \lambda$ for some $1 \leq \kappa<\frac{2}{(\nu+1)}$. Then

Closed loop performance affects approximation error

1. The solution \hat{v} is $\mathcal{E}_{\mathcal{G}}$-support accurate, and
2. $\left\|\hat{v}-v^{*}\right\|_{\mathcal{G}, \infty} \leq \lambda\left(\frac{\kappa}{\alpha}\right)_{\leftarrow}$

And which controller components we are able to identify

Corollary

If $\left\|v_{g}^{*}\right\|>\lambda\left(\frac{\kappa}{\alpha}\right)$ for all $g \in \mathcal{G}^{*}$. Then \hat{v} is \mathcal{G}-support accurate.
only recover dominant control components

Support Accurate Approximations

In co-design problems, closed loop norm plays the role of estimation noise in identification problems

Support Accurate Approximations

In co-design problems, closed loop norm plays the role of estimation noise in identification problems

Within each class of k-sparse controllers the controller leading to best performance is easiest to identify via convex programming

Actuator Regularization

Goal

Choose which actuators we need

Approach

Under mild assumptions each row of Q corresponds to $\operatorname{minimize}_{Q}\left\|P_{z w}+P_{z u} Q P_{y w}\right\|$
s.t. Q stable \& causal an actuator

To make finite dimensional, set a horizon T and order N

$$
\operatorname{minimize}_{v>2}\left\|y-\mathcal{L} \mathcal{E}_{\mathcal{G}}(v)\right\|_{F}^{2}+\lambda\|v\|_{\mathcal{G}^{\kappa}} \quad \text { simplicity }
$$

Performance

$$
y=\underset{\text { al controller }}{\mathcal{G}}\left(\underset{\mathcal{V}}{ }\left(v^{*}\right)+\underset{\uparrow}{\epsilon}\right.
$$

Nominal closed loop

Actuator Regularization: Sample Path

 T =20, N=3, \#inputs = 10, \#outputs = 10, \#states = 10

Incoherence Assumptions

Are these realistic?

Incoherence Assumptions

Are these realistic?
Do not have good theory yet

Incoherence Assumptions

Are these realistic?

Do not have good theory yet

Structure \& Stability Help

Banded matrices, Spatially decaying impulse responses, etc.

Incoherence Assumptions

Are these realistic?
Do not have good theory yet

Structure \& Stability Help

Banded matrices, Spatially decaying impulse responses, Toeplitz "sensing" matrices, etc.

Randomization Helps
Homogenous systems a simplifying assumption

Incoherence Assumptions

Are these realistic?

Do not have good theory yet

Structure \& Stability Help

Banded matrices, Spatially decaying impulse responses, Toeplitz "sensing" matrices, etc.

Randomization Helps
Homogenous systems a simplifying assumption

Overly conservative?

Gains restricted to cones instead of subspaces?

Roadmap for $2^{\text {nd }}$ Part

Networked Control Systems

- Single plant/controller: connections with information theory
- Approaches for extending to distributed control

Varying Delays

- Recent progress

Distributed System Identification

- Known structure
- Unknown structure

Control Architecture Design
Emphasize Connections to Optimization \& Statistics

Recap of 2nd Part

Networked Control Systems \& Varying Delays

- Connections with information theory
- Assume channels manifest themselves as varying delays

Distributed System Identification \& Control
Architecture Design

- When nothing is hidden, not too tough
- Hidden variables lead to de-convolution problems: we have good convex methods

Control Architecture Design

- Inherently combinatorial problem can be addressed using ideas from structured identification
- Deeper theoretical connections: estimation noise = closed loop

Going Forward

Integration

- Layering as optimization decomposition, Chiang, Low, Calderbank \& Doyle '07

Adapt our expectations

- Results that are not scalable to implement: fundamental limits
- Identify new metrics that lead to scalable architectures that approximate these fundamental limits

Combine control, optimization and statistics

- All different sides of the same coin (simplex?)
- Principled theory for analysis and design of large-scale systems no longer out of our reach
- An exciting time to be in CDS + CMS!

Thank you!!!

We will post slides and reference list on workshop website and at http://www.cds.caltech.edu/~nmatni

Questions?

