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Virtualization – a new computing paradigm 

  Key benefits 
• Higher hardware utilization 
•  Easier deployment 

•  Elastic capacity 
•  Better agility via live migration 

• Higher availability  

•  Fault tolerance 
•  Lower energy cost 
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Virtual machines become mainstream in IT 
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•  (also from Gartner): 5 out of every 6 x86 server 
workloads are deployed in VMs by 2015. 

•  vSphere-infographic, VMworld 2011. 

3 



•  Cloud computing is a model for enabling ubiquitous, convenient, on-demand 
network access to a shared pool of configurable computing resources (e.g., 
networks, servers, storage, applications, and services) that can be rapidly 
provisioned and released with minimal management effort or service provider 
interaction. This cloud model is composed of five essential characteristics, three 
service models, and four deployment models.  

•  Source: NIST definition of cloud computing. NIST special publication 800-145, Sep. 2011. 

What is cloud computing? 
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Rapidly growing public cloud market 
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How about hosting critical applications?  
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64% 

51% 

44% 

Source: “The hidden costs of managing applications in the cloud,” Compuware/Research In Action White Paper, Dec. 2012, 
based on survey results from 468 CIOs in Americas, Europe, and Asia. 

Application performance – a real concern 
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Application performance management is hard 
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•  On average, 46.2 hours spend in “war-room” scenarios each month  
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Source: Improving the usability of APM data: Essential capabilities and benefits. TRAC Research, June 2012, based on 
survey data from 400  IT organizations worldwide  

Challenges in managing application performance 
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“false 
negatives”  

Source: Improving the usability of APM data: Essential capabilities and benefits. TRAC Research, June 2012, based on 
survey data from 400  IT organizations worldwide  

Challenges in usability of performance data 
 



APM goal: achieve service-level-objective (SLO) 
Technical challenges 

•  Enterprise applications are distributed or multi-tiered 
•  App-level performance depends on access to many 

resources 
–  HW: CPU, memory, cache, network, storage 
–  SW: threads, connection pool, locks 

•  Time-varying application behavior 
•  Time-varying hosting condition 
•  Dynamic and bursty workload demands 
•  Performance interference among co-hosted applications 
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Better IT analytics for APM automation 
Three-pronged approach 
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Control 

Optimization 

Learning 



Why learning? 

•  Deals with APM-generated big data problem 

•  Fills the semantic gap with learned models 

•  Answers key modeling questions 
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Source: “APM-generated big data boom.” Netuitive & APMDigest, July 2012, based on survey of US & UK IT professionals. 

APM-generated big data 
•  “APM tools were part of the huge explosion in metric 

collection, generating thousands of KPIs per application.” 
•  “83% of respondents agreed that metric data collection has 

grown >300% in the last 4 years alone.” 
•  “88% of companies are only able to analyze less than half 

of the metric data they collect… 45% analyze less than a 
quarter of the data.” 

•  “77% of respondents cannot effectively correlate business, 
customer experience, and IT metrics.” 
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Real-time performance monitoring 
Infrastructure-level  
Physical host metrics 
•  System-level stats collected by the hypervisor 

§  e.g., esxtop – CPU, memory, disk, network, interrupt 
•  CPU stats 

§  %USED, %RUN, %RDY, %SYS, %OVRLP, %CSTP, %WAIT, %IDLE, 
%SWPWT 

•  ~100s-1000s metrics per host! 

VM metrics 
•  Resource usage stats collected by the guest OS 

§  e.g., dstat, iostat 
•  ~10s metrics per VM 

•  Widely available on most platforms 
•  Available at a time scale of seconds to minutes 
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Real-time performance monitoring 
Application-level 
Metrics reflecting end user experience 
•  Response times 
•  Throughput (or errors such as timed out requests) 

VMware Hyperic monitoring tool 
•  Agents deployed in VMs 
•  Auto-discovers types of applications running 
•  Plugins to extract application-related performance stats 
•  Stats available at a time scale of minutes 
•  Stats aggregated in Hyperic server 
•  Supports over 80 different application components 
•  Extensible framework to allow customized plugins 
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The Semantic Gap challenge 
Correlating performance data from different sources 
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Semantic gap filled by performance models 

Traditional models harder to apply 
•  First-principle models: Only exist for special cases (e.g., flow models) 

•  Queuing models: More suitable for aggregate/average behavior 

•  Architectural models: Require domain knowledge, harder to automate 
 

Empirical models via statistical learning 

•  Data driven, easier to automate and scale 

•  Offline modeling usually insufficient  
§  Time-varying workloads 

§  Changing system/software configurations 

•  Online modeling  
•  Need to be low overhead 
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Learning helps answer key modeling questions 

• Q1: Which variables go into the model? 
•  Which system resources or parameters affect application 

performance the most? 

• Q2: What kind of model should we use?  
•  Nonlinear models - better accuracy in general 
•  Linear regression models - cheaper to compute and easier to 

interpret 

• Q3: How to ensure our model captures recent behavior?  
•  Continuous online adaptation 

•  Online change-point detection 
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Auto-Scaling to maintain application SLO 
A feedback-control approach 
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Auto-Scaling to maintain application SLO 
A feedback-control approach 
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Auto-Scaling to maintain application SLO 
A feedback-control approach 
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•  User-defined threshold on a specific metric 
–  Spin up new instances when threshold is violated 
–  e.g. AWS Auto Scaling: http://aws.amazon.com/autoscaling/ 

 
 
•  Challenges 

–  How to determine the threshold value? 
–  How to handle multiple application tiers? 
–  How to handle multiple resources? 

Existing solutions to horizontal scaling 
Threshold-based approach 

Threshold 
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Our Solution: Learning-based auto scaling  
•  Uses reinforcement learning to capture application’s 

scaling behavior and inform future actions 
•  Uses heuristics to seed the learning process 
•  Handles multiple resources and tiers 
•  Fully automated without human intervention 
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Vertical scaling of resource containers 
Automatic tuning of resource control settings 
•  Available on various virtualization platforms 
•  For shared CPU, memory, disk I/O*, network I/O*: 

–  Reservation (R)* – minimum guaranteed amount of resources 
–  Limit (L) – upper bound on resource consumption (non-work-conserving) 
–  Shares (S) – relative priority during resource contention 

•  VM’s CPU/memory demand (D): estimated by hypervisor, critical to 
actual allocation 
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DRS (Distributed Resource Scheduler) 
Resource pool hierarchy 

•  Capacity of an RP divvied hierarchically based on resource settings 
•  Sibling RPs share capacity of the VDC 
•  Sibling VMs share capacity of the parent RP 
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VDC 

RP1 

VM1 VM2 Web App DB 
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RP2 
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Web App DB 
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* VMware distributed resource management: Design, implementation, and lessons learned, VMware Technical Journal, 
April 2012. 



Powerful knobs, hard to use 
•  How do VM-level settings impact application performance? 
•  How to set RP-level settings to protect high priority applications within 

the RP? 
•  Fully reserved (R=L=C) for critical applications 

–  Leads to lower consolidation ratio due to admission control 
•  Others left at default (R=0, L=C) until performance problem arises 

–  Increases reservation for the bottleneck resource (which one? by how much?) 
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Performance model learned for each vApp 
Maps VM-level resource allocations to app-level performance 
•  Captures multiple tiers and multiple resource types  

•  Choose a linear low-order model (easy to compute)  

•  Workload indirectly captured in model parameters  
•  Model parameters updated online in each interval (tracks nonlinearity) 
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Simplified optimal control law 
•  An example cost function 

 

•  Compute optimal resource allocations online 
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Resource pool sharing among multiple vApps 
•  Auto-tunes VM-level and RP-level resource control settings to meet 

application SLOs 
–  For each application, vApp Manager translates its SLO into desired 

resource control settings at individual VM level 
–  For each resource pool, RP Manager computes the actual VM- and RP-

level resource settings to satisfy all critical applications 
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Performance evaluation 
•  Application 

–  MongoDB – distributed data processing application with sharding 
–  Rain – workload generation tool to generate dynamic workload 
 

•  Workload 
–  Number of clients 
–  Read/write mix 

•  Evaluation questions 
–  Can the vApp Manager meet  

 individual application SLO? 
–  Can the RP Manager meet SLOs 

 of multiple vApps? 
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Result: Meeting mean response time target 
•  Under-provisioned initial settings: R = 0, Limit = 512 (MHz, MB) 
•  Over-provisioned initial settings: R = 0, L = unlimited (cpu, mem) 
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Initial-learning 



Resource utilization (under-provisioned case) 
•  Target response time = 300 ms 
•  Initial setting R = 0, L = 512 MHz/MB (under-provisioned) 

33 

0	
  

0.01	
  

0.02	
  

0.03	
  

0.04	
  

0.05	
  

0.06	
  

0.07	
  

0.08	
  

0.09	
  

1	
   11	
   21	
   31	
   41	
   51	
   61	
   71	
   81	
  

CP
U
	
  u
%l
iz
a%

on
	
  

CPU	
  u%liza%on	
  

Mongos-­‐CPU	
   Shard1-­‐CPU	
   Shard2-­‐CPU	
  

0	
  

0.02	
  

0.04	
  

0.06	
  

0.08	
  

0.1	
  

0.12	
  

0.14	
  

0.16	
  

0.18	
  

0.2	
  

1	
   11	
   21	
   31	
   41	
   51	
   61	
   71	
   81	
  

M
em

or
y	
  
u%

liz
a%

on
	
  

Memory	
  u%liza%on	
  

Mongos-­‐MEM	
   Shard1-­‐MEM	
   Shard2-­‐MEM	
  



The Vision of Autonomic Computing, IEEE Computer, Jan. 2003. 
“Systems manage themselves according to an administrator’s goals. 
New components integrate as effortlessly as a new cell establishes itself 
in the human body. These ideas are not science fiction, but elements of 
the grand challenge to create self-managing computing systems.” 
 

Enablers 
•  Widely deployed sensors and lots of (noisy) data 
•  New control knobs, resource fungibility and elasticity 
•  Increasing compute, storage, and network capacity 
•  Matured learning, control, and optimization techniques 

Challenges 
•  Software complexity, nonlinearity, dependency, scalability 
•  Automated root-cause analysis, integrated diagnosis & control 
•  Need more collaborations between control and systems people 
•  How to teach control theory to CS students? 
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Grand challenge 
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Thanks to collaborators 
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  VMware  
   • Lei Lu, Rean Griffith, Mustafa Uysal, Anne Holler, Pradeep Padala, Aashish 
Parikh, Parth Shah 

  HP Labs  
   • Zhikui Wang, Sharad Singhal, Arif Merchant (now Google)  

  KIT  
   • Simon Spinner, Samuel Kounev  

  College of William & Mary  
   • Evgenia Smirni  

  Georgia Tech  
   • Pengcheng Xiong (now NEC Lab), Calton Pu  

  University of Michigan  
   • Kang Shin, Karen Hou  



Related venues 
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• International Conference on Autonomic Computing 
  https://www.usenix.org/conference/icac14 

 

• Feedback Computing Workshop (formerly known as FeBID) 

  http://feedbackcomputing.org/ 

  http://www.controlofsystems.org/ 

• Lund University Cloud Control Workshop (LCCC) 

  http://www.lccc.lth.se/index.php?page=Workshop201405Program 
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