
© 2014 VMware Inc. All rights reserved.

Applying Control Theory to Application
Performance Management in the Cloud

Xiaoyun Zhu

CDS@20

August 7, 2014

Virtualization – a new computing paradigm

  Key benefits
• Higher hardware utilization
•  Easier deployment

•  Elastic capacity
•  Better agility via live migration

• Higher availability

•  Fault tolerance
•  Lower energy cost

2 2

Virtual machines become mainstream in IT

3

•  (also from Gartner): 5 out of every 6 x86 server
workloads are deployed in VMs by 2015.

•  vSphere-infographic, VMworld 2011.

3

•  Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction. This cloud model is composed of five essential characteristics, three
service models, and four deployment models.

•  Source: NIST definition of cloud computing. NIST special publication 800-145, Sep. 2011.

What is cloud computing?

4

4

Rapidly growing public cloud market

5

How about hosting critical applications?

6

64%

51%

44%

Source: “The hidden costs of managing applications in the cloud,” Compuware/Research In Action White Paper, Dec. 2012,
based on survey results from 468 CIOs in Americas, Europe, and Asia.

Application performance – a real concern

7

Application performance management is hard

8

Cloud
hosting
provider

Service Level Objective: 95% of all
transactions should be completed within 500ms

Many tenant
applications

SLO violation!
Performance
troubleshooting &
remediation

•  On average, 46.2 hours spend in “war-room” scenarios each month

9

Source: Improving the usability of APM data: Essential capabilities and benefits. TRAC Research, June 2012, based on
survey data from 400 IT organizations worldwide

Challenges in managing application performance

10

“false
negatives”

Source: Improving the usability of APM data: Essential capabilities and benefits. TRAC Research, June 2012, based on
survey data from 400 IT organizations worldwide

Challenges in usability of performance data

APM goal: achieve service-level-objective (SLO)
Technical challenges

•  Enterprise applications are distributed or multi-tiered
•  App-level performance depends on access to many

resources
–  HW: CPU, memory, cache, network, storage
–  SW: threads, connection pool, locks

•  Time-varying application behavior
•  Time-varying hosting condition
•  Dynamic and bursty workload demands
•  Performance interference among co-hosted applications

11 11

Better IT analytics for APM automation
Three-pronged approach

12

Control

Optimization

Learning

Why learning?

•  Deals with APM-generated big data problem

•  Fills the semantic gap with learned models

•  Answers key modeling questions

13 13

Source: “APM-generated big data boom.” Netuitive & APMDigest, July 2012, based on survey of US & UK IT professionals.

APM-generated big data
•  “APM tools were part of the huge explosion in metric

collection, generating thousands of KPIs per application.”
•  “83% of respondents agreed that metric data collection has

grown >300% in the last 4 years alone.”
•  “88% of companies are only able to analyze less than half

of the metric data they collect… 45% analyze less than a
quarter of the data.”

•  “77% of respondents cannot effectively correlate business,
customer experience, and IT metrics.”

14

Real-time performance monitoring
Infrastructure-level
Physical host metrics
•  System-level stats collected by the hypervisor

§  e.g., esxtop – CPU, memory, disk, network, interrupt
•  CPU stats

§  %USED, %RUN, %RDY, %SYS, %OVRLP, %CSTP, %WAIT, %IDLE,
%SWPWT

•  ~100s-1000s metrics per host!

VM metrics
•  Resource usage stats collected by the guest OS

§  e.g., dstat, iostat
•  ~10s metrics per VM

•  Widely available on most platforms
•  Available at a time scale of seconds to minutes

15

Real-time performance monitoring
Application-level
Metrics reflecting end user experience
•  Response times
•  Throughput (or errors such as timed out requests)

VMware Hyperic monitoring tool
•  Agents deployed in VMs
•  Auto-discovers types of applications running
•  Plugins to extract application-related performance stats
•  Stats available at a time scale of minutes
•  Stats aggregated in Hyperic server
•  Supports over 80 different application components
•  Extensible framework to allow customized plugins

16

The Semantic Gap challenge
Correlating performance data from different sources

17

Semantic gap filled by performance models

Traditional models harder to apply
•  First-principle models: Only exist for special cases (e.g., flow models)

•  Queuing models: More suitable for aggregate/average behavior

•  Architectural models: Require domain knowledge, harder to automate

Empirical models via statistical learning

•  Data driven, easier to automate and scale

•  Offline modeling usually insufficient
§  Time-varying workloads

§  Changing system/software configurations

•  Online modeling
•  Need to be low overhead

18

Learning helps answer key modeling questions

• Q1: Which variables go into the model?
•  Which system resources or parameters affect application

performance the most?

• Q2: What kind of model should we use?
•  Nonlinear models - better accuracy in general
•  Linear regression models - cheaper to compute and easier to

interpret

• Q3: How to ensure our model captures recent behavior?
•  Continuous online adaptation

•  Online change-point detection

19

Auto-Scaling to maintain application SLO
A feedback-control approach

20

Front
Tier DB Tier End

User

Application Latency

Auto-Scaling to maintain application SLO
A feedback-control approach

21

Front
Tier DB Tier End

User

Application Latency

Front
Tier DB Tier End

User

Application Latency

Horizontal scaling

Auto-Scaling to maintain application SLO
A feedback-control approach

22

Front
Tier DB Tier End

User

Application Latency

Front
Tier DB Tier End

User

Application Latency

Vertical scaling Horizontal scaling

•  User-defined threshold on a specific metric
–  Spin up new instances when threshold is violated
–  e.g. AWS Auto Scaling: http://aws.amazon.com/autoscaling/

•  Challenges

–  How to determine the threshold value?
–  How to handle multiple application tiers?
–  How to handle multiple resources?

Existing solutions to horizontal scaling
Threshold-based approach

Threshold

0	

20	

40	

60	

80	

0	
 5	
 10	
 15	
 20	
 25	

CP
U
	
 U
%l
iz
a%

on
	
 (%

)	

Time	

23

Our Solution: Learning-based auto scaling
•  Uses reinforcement learning to capture application’s

scaling behavior and inform future actions
•  Uses heuristics to seed the learning process
•  Handles multiple resources and tiers
•  Fully automated without human intervention

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800 900
 0

 2

 4

 6

 8

 10

 12

 14

 16

E
n
d
-t

o
-E

n
d
 L

a
te

n
cy

 (
m

s)

N
u
m

b
e
r

o
f
A

p
p
-S

e
rv

e
r

V
M

s
&

 N
u
m

b
e
r

o
f
C

lie
n
tT

h
re

a
d
s

Time in minutes

AppServer VMs
Client threads

avg Apache Latency
SLO

24

Vertical scaling of resource containers
Automatic tuning of resource control settings
•  Available on various virtualization platforms
•  For shared CPU, memory, disk I/O*, network I/O*:

–  Reservation (R)* – minimum guaranteed amount of resources
–  Limit (L) – upper bound on resource consumption (non-work-conserving)
–  Shares (S) – relative priority during resource contention

•  VM’s CPU/memory demand (D): estimated by hypervisor, critical to
actual allocation

25

R

L

VM configured size (C) Actual-allocation =
f(R, L, S, D, Cap)

Available capacity

DRS (Distributed Resource Scheduler)
Resource pool hierarchy

•  Capacity of an RP divvied hierarchically based on resource settings
•  Sibling RPs share capacity of the VDC
•  Sibling VMs share capacity of the parent RP

26

VDC

RP1

VM1 VM2 Web App DB

vApp1

RP2

vApp2

Web App DB

<R1, L1, S1> <R2, L2, S2>

<r, l, s>

* VMware distributed resource management: Design, implementation, and lessons learned, VMware Technical Journal,
April 2012.

Powerful knobs, hard to use
•  How do VM-level settings impact application performance?
•  How to set RP-level settings to protect high priority applications within

the RP?
•  Fully reserved (R=L=C) for critical applications

–  Leads to lower consolidation ratio due to admission control
•  Others left at default (R=0, L=C) until performance problem arises

–  Increases reservation for the bottleneck resource (which one? by how much?)

27

measured
performance p(t) per-VM resource settings

Web App DB

vApp

workload

Performance model learned for each vApp
Maps VM-level resource allocations to app-level performance
•  Captures multiple tiers and multiple resource types

•  Choose a linear low-order model (easy to compute)

•  Workload indirectly captured in model parameters
•  Model parameters updated online in each interval (tracks nonlinearity)

28

VM memory usage uk
m(t)

measured
performance p(t)

VM CPU usage uk
c(t)

Web App DB

vApp Model
p(t) = f(p(t-1),u(t))

workload λ	

VM I/O usage uk
io(t)

Simplified optimal control law
•  An example cost function

•  Compute optimal resource allocations online

29

22 ||)()1(||))1(())1((ttptptJ SLO uuu −++−+=+ β

Tradeoff between
performance and stability

performance cost control cost

Resource pool sharing among multiple vApps
•  Auto-tunes VM-level and RP-level resource control settings to meet

application SLOs
–  For each application, vApp Manager translates its SLO into desired

resource control settings at individual VM level
–  For each resource pool, RP Manager computes the actual VM- and RP-

level resource settings to satisfy all critical applications

30

Arbiter Actuator

Desired VM resource settings

VM1 VM2 VMn ...

App/System Sensors

vApp Manager

VM2 VMn ...

App/System Sensors

vApp Manager

VM1

vApp1 vApp2

Actual VM- or RP-level
settings via vSphere API

...

Resource Pool
(RP)

App-level
SLO

App-level
SLO

Resource Pool Manager
(RP Manager)

Performance evaluation
•  Application

–  MongoDB – distributed data processing application with sharding
–  Rain – workload generation tool to generate dynamic workload

•  Workload
–  Number of clients
–  Read/write mix

•  Evaluation questions
–  Can the vApp Manager meet

 individual application SLO?
–  Can the RP Manager meet SLOs

 of multiple vApps?

31

VM

Shard1

Shard2

Configsvr

Mongos

VM1

VM2

VM3

0.1	

1	

10	

100	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	
 51	
 56	
 61	
 66	
 71	
 76	
 81	
 86	

N
or
m
al
iz
ed

	
 R
es
po

ns
e	

Ti
m
e	

Mean	
 response	
 %me	
 (
 target	
 300ms)	

RT-­‐scenario1	
 RT-­‐scenario2	
 Target	

control + continued-learning

Time interval (every 1 min)

Result: Meeting mean response time target
•  Under-provisioned initial settings: R = 0, Limit = 512 (MHz, MB)
•  Over-provisioned initial settings: R = 0, L = unlimited (cpu, mem)

32

Initial-learning

Resource utilization (under-provisioned case)
•  Target response time = 300 ms
•  Initial setting R = 0, L = 512 MHz/MB (under-provisioned)

33

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

0.09	

1	
 11	
 21	
 31	
 41	
 51	
 61	
 71	
 81	

CP
U
	
 u
%l
iz
a%

on
	

CPU	
 u%liza%on	

Mongos-­‐CPU	
 Shard1-­‐CPU	
 Shard2-­‐CPU	

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

0.16	

0.18	

0.2	

1	
 11	
 21	
 31	
 41	
 51	
 61	
 71	
 81	

M
em

or
y	

u%

liz
a%

on
	

Memory	
 u%liza%on	

Mongos-­‐MEM	
 Shard1-­‐MEM	
 Shard2-­‐MEM	

The Vision of Autonomic Computing, IEEE Computer, Jan. 2003.
“Systems manage themselves according to an administrator’s goals.
New components integrate as effortlessly as a new cell establishes itself
in the human body. These ideas are not science fiction, but elements of
the grand challenge to create self-managing computing systems.”

Enablers
•  Widely deployed sensors and lots of (noisy) data
•  New control knobs, resource fungibility and elasticity
•  Increasing compute, storage, and network capacity
•  Matured learning, control, and optimization techniques

Challenges
•  Software complexity, nonlinearity, dependency, scalability
•  Automated root-cause analysis, integrated diagnosis & control
•  Need more collaborations between control and systems people
•  How to teach control theory to CS students?

34

Grand challenge

34

Thanks to collaborators

35

  VMware
   • Lei Lu, Rean Griffith, Mustafa Uysal, Anne Holler, Pradeep Padala, Aashish
Parikh, Parth Shah

  HP Labs
   • Zhikui Wang, Sharad Singhal, Arif Merchant (now Google)

  KIT
   • Simon Spinner, Samuel Kounev

  College of William & Mary
   • Evgenia Smirni

  Georgia Tech
   • Pengcheng Xiong (now NEC Lab), Calton Pu

  University of Michigan
   • Kang Shin, Karen Hou

Related venues

36

• International Conference on Autonomic Computing
  https://www.usenix.org/conference/icac14

• Feedback Computing Workshop (formerly known as FeBID)

  http://feedbackcomputing.org/

  http://www.controlofsystems.org/

• Lund University Cloud Control Workshop (LCCC)

  http://www.lccc.lth.se/index.php?page=Workshop201405Program

References
•  X. Zhu, et al. “What does control theory bring to systems research?” ACM SIGOPS

Operating Systems Review, 43(1), January 2009.

•  P. Padala et al. “Automated control of multiple virtualized resources.” Eurosys 2009.

•  A. Gulati et al. “VMware distributed resource management: Design, implementation, and
lessons learned.” VMware Technical Journal, Vol. 1(1), April 2012.

•  P. Xiong et al. “vPerfGuard: An automated model-driven framework for application
performance diagnosis in consolidated cloud environments.” ICPE 2013.

•  A. Gulati , “Towards proactive resource management in virtualized datacenters,”
RESoLVE 2013.

•  L. Lu, et al., “Application-Driven dynamic vertical scaling of virtual machines in resource
pools.” NOMS 2014.

37

