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Motivating example: control of cavity oscillations

• Model-based controller to suppress oscillations	



• Full system: 2,000,000 states	



• Control design based on low-order model with 2 states
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[Rowley and Juttijudata, CDC 2005]



Outline

!

• Balanced models	



• Galerkin projection	



• Balanced truncation for fluids	



• Example: channel flow	


!
!

• Koopman operator	



• Some history	



• Koopman modes	



• Examples
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Galerkin projection

• Dynamics evolve on a high-dimensional space (or infinite-dim’l)	



• Project dynamics onto a low-dimensional subspace S	


!
!
!
!
!
!

• Define dynamics on the subspace by	


!
!

• Two choices:	



• choice of subspace	



• choice of inner product 
(equivalently, choice of the nullspace for a non-orthogonal projection)
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Balanced truncation for fluids?

• Why not use balanced truncation?	



• Typically intractable for fluids simulations	



• Requires simultaneous diagonalization of controllability and 
observability Gramians (non-sparse symmetric n x n matrices).  
Even storing these is usually not possible:
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Dimension Grid size n Storage

1 100 10 39 KB

2 100 x 100 10 381 MB

3 100 x 100 x 100 10 3.7 TB



Key idea: empirical Gramians

• Approximate the Gramians using data from simulations 
[Lall, Marsden, Glavaski, IFAC 1999]	



• Controllability Gramian:  
 
 
 
For a single-input system, let                      be solution for  
 
 

• Balanced POD: algorithm for computing balancing transformation 
from data, analogous to "method of snapshots" for POD. 
[Rowley, IJBC 2005]
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Net result: can compute the balancing 
transformation directly from data, even for high-

dimensional systems.
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Geometry of the projection

• Balanced POD gives two sets of modes	



• Balancing modes     determine the subspace to project onto	



• These are typically close to the POD modes	



• Adjoint modes      determine the direction of projection	



• Typically very different from POD modes
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Linearized channel flow
• Plane channel flow in a periodic box	



• Consider linear development of small perturbations	



• Stable system, but large transient growth (non-normal)	



• Approach	



• Compare POD with Balanced POD	



• DNS, Re = 2000, 32x65x32 grid, 133,120 states	



• Try to capture linear dynamics with a reduced-order model
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POD model performance
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• 5-order model with modes 1,2,3,10,17 much better than 5-mode 
model with modes 1–5.
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Conclusion: some low-energy POD modes are 
very important for the system dynamics.	



Can’t naively use just the most energetic ones.



Balanced POD models are more accurate

• Three-mode BPOD model excellent at capturing the energy growth	



• Rank 8 BPOD model sufficient to correctly capture the dynamics of 
the first five POD modes, compared to at least 23 POD modes 	



• Explanation: BPOD weights modes by their observability, or dynamical 
importance, not just energy
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Balanced POD models are less fragile

• BPOD 10-mode OP 50-mode model taken as ‘full system’	



• POD poorly captures low-pass behavior,  spurious peaks	



• BPOD models more “robust” than POD (no spurious lightly-
damped modes)
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Outline

!

• Balanced models	



• Galerkin projection	



• Balanced truncation for fluids	



• Example: channel flow	


!
!

• Koopman operator	



• Some history	



• Koopman modes	



• Examples
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Mode 25, f+ = 4.72, |�| = 1.000, �n · ⇤v⇤ = 2.54e-04
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Koopman operator

• Consider a nonlinear system (discrete time)  
 

• Define the Koopman operator U as follows: for any scalar-valued 
function g, U maps g into a new function  
 

• U is linear:  
 

• Koopman (1931) proposed analyzing a dynamical system by studying 
the spectral properties of U  

• Historical digression...
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xk+1 = f(xk)

Ug(x) = g(f(x))

U(�g1 + ⇥g2)(x) = �Ug1(x) + ⇥Ug2(x)



George David Birkhoff (1884–1944)

• Probably the preeminent American mathematician of his time	



• Taught at Wisconsin 1907–9	



• Moved to Princeton in 1909 as a preceptor in Mathematics; 
became a professor in 1911	



• Moved to Harvard in 1912	



• 1931: proved the ergodic theorem (age 47)
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Bernard Osgood Koopman (1900–1981)

• Student of Birkhoff (Harvard PhD in 1926)	



• PhD thesis: On rejection to infinity and exterior motion in the restricted 
problem of three bodies	



• Instructor at Columbia 1926, then professor	



• Interested in the theory being developed by von Neumann, on 
linear transformations in Hilbert space	



• Published his "big paper" in PNAS, March 1931
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Bernard Osgood Koopman 

MA THEMA TICS: B. 0. KOOPMAN

HAMILTONIAN SYSTEMS AND TRANSFORMATIONS IN
HILBERT SPACE
BY B. 0. KOOPMAN

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY

Communicated March 23, 1931

In recent years the theory of Hilbert space and its linear transformations
has come into prominence.' It has been recognized to an increasing
extent that many of the most important departments of mathematical
physics can be subsumed under this theory. In classical physics, for
example in those phenomena which are governed by linear conditions-
linear differential or integral equations and the like, in those relating to
harmonic analysis, and in many phenomena due to the operation of the
laws of chance, the essential r6le is played by certain linear transformations
in Hilbert space. And the importance of the theory in quantum me-
chanics is known to all. It is the object of this note to outline certain
investigations of our own in which the domain of this theory has been
extended in such a way as to include classical Hamiltonian mechanics,
or, more generally, systems defining a steady n-dimensional flow of a
fluid of positive density.

Consider the dynamical system of n degrees of freedom, the canonical
equations of which are formed from the Hamiltonian H(q, p) = H(ql,
* a qny ply .... ps), which we will assume to be single-valued, real, and
analytic in a certain 2n-dimensional region R of the real qp-space. The
solutions, or equations of motion, are qk = fk(q0, p0, t), Pk = gk(q0, po, t),
(k = 1, ..., n), these functions being single-valued, real and analytic
for all (q° , p° ) in R and for t in a real interval containing t = 0 dependent
on (q° , p° ). It is shown that the transformation St: (q° , po) > (q, p)
defined by these equations for suitably restricted t has the formal proper-
ties: St1S1, = Si, + ,, So = I. The system admits the "integral of energy"
H(q, p) = const.; hence, if Ql denote a variety H(q, p) = C of points of
R, a path curve of St having one point on Q will remain on Q as long as
the curve remains in R. We shall assume that C is such that this is the
case for all values of t; this will be the situation, for example, if Q consists
of a closed set of interior points of R. It is shown that under these condi-
tions fk and gk are analytic for all (q° , p° ) on Q and for - co < t < + o, so
that SI effectuates a one-parameter group of analytic automorphisms of
U. Furthermore, St leaves invariant the value of a certain integral
fpdw taken over an arbitrary region of U; here, p is a positive, single-
valued, analytic function on Q. This is a consequence of the fact that

.dqi.. dqn, dp.. . dp, is an integral invariant of the system. In the
special case where there are m further integrals Fj(q, p) = Cj of the system,

VOL. 17, 1931 315



John von Neumann (1903–1957)

• 1930: Moved to Princeton (from Germany) as an assistant 
professor in Mathematics	



• 1931/2: proved the mean ergodic theorem (age 28)
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John von Neumann by the IAS machine in 1952



The ergodic theorems

• Mean ergodic theorem (von Neumann, PNAS 1931/2)	



• His first paper published in English	



• Koopman translated it from German
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MATHEMA TICS: J. V. NEUMANN

The proof holds in any number of dimensions, if the constant in Ham-
ack's inequality is changed properly.

* Presented to the American Mathematical Society, Dec. 28, 1931.
t NATIONAL RESEARCH FELLOW.
1 Q. Perron, Math. Zeit., 18, 42-54 (1923); we follow the notations in this paper.
2 R. Remak, Math. Zeit., 20, 126-130 (1924); T. Rad6 and F. Riesz, Ibid. 22,

41-44 (1925); R. Remak, J. I. Math., 156, 227-230 (1926). The proof here given
is in essence like that of the last-named paper.

3 I. Petrowsky, Rec. Math. Moscou, 35, 105-110 (1928); N. Wiener, J. Math. Phys.
Mass. Inst. Techn., 4, 21-32 (1925).

PROOF OF THE QUASI-ERGODIC HYPOTHESIS
By J. V. NEUMANN

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY

Communicated December 10, 1931

1. The purpose of this note is to prove and to generalize the quasi-
ergodic hypothesis of classical Hamiltonian dynamics' (or "ergodic hy-
pothesis," as we shall say for brevity) with the aid of the reduction, recently
discovered by Koopman,2 of Hamiltonian systems to Hilbert space, and
with the use of certain methods of ours closely connected with recent in-
vestigations of our own of the algebra of linear transformations in this
space.3 A precise statement of our results appears on page 79.
We shall employ the notation of Koopman's paper, with which we

assume the reader to be familiar. The Hamiltonian system of k degrees
of freedom corresponding with the Hamiltonian ftnction H(qj, ..., qk,
pl, .. ., pk) defines a steady incompressible flow P - Pi = SIP in the
space P of the variables (ql, ..., qk. pi, ....pk) or "phase-space," and a
corresponding steady conservative flow of positive density p in any in-
variant sub-space Q C 4' (Q being, e.g., the set of points in 'I of equal
energy). The Hilbert space p consists of the class of measurable functions
f(P) having the finite Lebesgue integral ]a If 12pdw, the "inner product"4
of any two of them (f, g) and "length" Ilft! being defined by the equations

(fU g) = J ffgpdA; Ilf l = x/u,f). (1)
The transformation Ut is defined as follows:

UJ(P) = f(StP) = f(Pt); (2)

obviously it has the group property

70 PROC. N. A. S.



Birkhoff's ergodic theorem

• von Neumann obtained his theorem first, and Birkhoff was aware of 
his result	



• Birkhoff's paper appeared in Dec 1931, von Neumann's in Jan 1932!	



• Birkhoff and Koopman wrote a paper [PNAS, Mar 1932] setting the 
record straight.	



• Detailed account: [J. Zund, Historia Mathematica 2002]
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MATHEMATICS: G. D. BIRKHOFF

PROOF OF THE ERGODIC THEOREM
By GEORGE D. BIRHOFF

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY

Communicated December 1, 1931

Let
dxi
dt =Xi(x, X...x") (i= 1,..n)

be a system of n differential equations valid on a closed analytic manifold
M, possessing an invariant volume integral, and otherwise subject to the
same restrictions as in the preceding note, except that the hypothesis of
strong transitivity is no longer made.
We propose to establish first that, without this hypothesis, we have

lim tn(P)
= (p) (1)

n = co n

for all points P of the surface a save for points of a set of measure 0. In
other words, there is a "mean time r(P), of crossing" of a. for the general
trajectory.
The proof of the "ergodic theorem," that there is a time-probability p

that a point P of a general trajectory lies in a given volume v of M, parallels
that of the above recurrence theorem, as will be seen.
The important recent work of von Neumann (not yet published) shows

only that there is convergence in the mean, so that (1) is not proved by
him to hold for any point P, and the time-probability is not established
in the usual sense for any trajectory. A direct proof of von Neumann's
results (not yet published) has been obtained by E. Hopf.
Our treatment will be based upon the following lemma: If SA[SA] is

a measurable set on a, which is invariant under T, except possibly for a
set of measure 0, and if for any point P of this set

tn(P) ___p
lim sup n > X> 0 lim inf < X> 0 (2)

n = coX n= coX

then

fs5tn(P)dP > X fJsdP [fs, t(P)dP < X JA dP. (3)

We consider only the first case, for the proof of the second case is entirely
similar. In analogy with the preceding note, define the distinct measur-
able sets U1, U2, ... on SA so that for P in U.

tn(P) > n(X - e) (P not in U1, U2, ..., U".1)

656 PROC. N. A. S.

(4)



Meanwhile, at Bell Labs...

• Nyquist stability criterion (1932)
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• Consider a nonlinear system (discrete time)  
 
 
and the corresponding Koopman operator U: 
 

• Suppose U has eigenvalues and eigenfunctions 
 

• Now, consider a vector-valued observable g(x).  Expand g:

Koopman eigenfunctions and modes

20

xk+1 = f(xk)

Ug(x) = g(f(x))

U⇥j(x) = �j⇥j(x), j = 1, 2, . . .

g(x) =
��

j=1

�j(x)vj .

Koopman modes

Mezic, Nonlinear Dynamics, 2005	


Rowley, Mezic, Bagheri, Schlatter, Henningson, J Fluid Mech, 2009



Example: Koopman modes for linear systems

• Consider a linear system 

• Find eigenvalues and eigenvectors (direct and adjoint):  
 

• Define  

• Then φj are eigenfunctions of Koopman operator U:  
 
 
 

• For the observable g(x) = x, the Koopman modes are the 
eigenvectors vj:
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f(x) = Ax

U⇥j(x) = ⇥j(Ax) = �Ax,wj⇥ = �x,A�wj⇥
= �j �x,wj⇥ = �j⇥j(x)

A�wj = �̄jwjAvj = �jvj

�j(x) = �x,wj⇥

x =
n�

j=1

�x,wj⇥vj =
n�

j=1

�j(x)vj

Koopman modes



Example: Koopman modes for a periodic system

• Suppose we have a nonlinear system 
 
 
with a periodic solution	



• A common way to analyze periodic solutions is the discrete 
Fourier transform: define a new set of vectors	


!
!
!

• Define a function on the finite set	


!

•  These are eigenfunctions of the Koopman operator U:	


!
!
!

• Koopman modes are the discrete Fourier transform of the data
22

xk+1 = f(xk)

{x0, . . . ,xm�1}

{x̂0, . . . , x̂m�1} xk =
m�1�

j=0

e2�ijk/mx̂j

�j(xk) = e2�ijk/m

U�j(xk) = �j(f(xk)) = �j(xk+1)

= e2�ij(k+1)/m = e2�ij/m�j(xk)

Koopman modes

{x0, . . . ,xm�1}



Computing Koopman modes: DMD

• Dynamic Mode Decomposition (DMD)	



• Introduced by Peter Schmid [APS 2008]	



• Algorithm for computing Koopman modes [Rowley et al, JFM 2009]	



• Suppose we have a discrete-time dynamical system  
and two sets of data:  
 
 
with	



• The DMD modes (or Koopman modes) are eigenvectors of 
 
 
where + denotes the Moore-Penrose pseudoinverse.	



• Each DMD mode      evolves according to
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X =
⇥
x1 x2 · · · xm

⇤
Y =

⇥
y1 y2 · · · ym

⇤

z 7! f(z)

yj = f(xj)

A = Y X+

J. Tu et al, "On Dynamic Mode Decomposition: Theory and Applications,"	


arXiv:1312:0041 [math.NA].

vj vj 7! �jvj



Example: jet in crossflow

• Linearize a jet in crossflow about an unstable equilibrium  

!
!
!
!
!
!
!

• Compute global modes, compare frequencies with observed 
frequencies in shear layer and near-wall fluctuations
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Instantaneous snapshot Mean Unstable equilibrium

[Bagheri, Schlatter, Schmid, Henningson, JFM 2009]

Observed Global mode

Shear layer St = 0.141 St = 0.169

Near wall St = 0.0174 St = 0.043

Frequency 
mismatch

Re��0 = 165

Vjet/U⇥ = 3
��0/D = 1/3



Koopman modes
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St = 0.017

St = 0.141

• High-frequency mode captures 
structures in the shear layer	


!
!
!
!
!
!

• Low-frequency mode captures 
near-wall structures associated 
with horseshoe vortex



Separated flat plate

!

• No forcing	



!

!

!

• Forcing at f+ = 4.7	



!

!

!

• Forcing at f+ = 6.4
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Koopman modes
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Mode 84, f+ = 2.16, |�| = 1.001, �n · ⇤v⇤ = 3.49e-04

Mode 96, f+ = 3.95, |�| = 1.001, �n · ⇤v⇤ = 1.84e-05

Mode 98, f+ = 4.36, |�| = 0.999, �n · ⇤v⇤ = 2.29e-05
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Mode 110, f+ = 6.51, |�| = 0.995, �n · ⇤v⇤ = 1.47e-05

Mode 120, f+ = 8.05, |�| = 0.986, �n · ⇤v⇤ = 8.36e-06

Mode 136, f+ = 10.56, |�| = 0.992, �n · ⇤v⇤ = 6.76e-06
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Almost invariant sets in the double gyre

• Approximate Koopman operator using (extended) DMD	



• Compute almost-invariant sets, which are related to 
eigenfunctions of a modified Koopman operator 
[Froyland & Dellnitz, 2003] [Froyland 2005]
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Second eigenfunction Third eigenfunction

Almost invariant sets



Coherent sets in the Philippine Sea

• Compute coherent sets from ocean drifter data	



• Simulated drifter trajectories generated from a numerical model 
for the velocity field near the Philippines (with I. Rypina, WHOI)	


!
!
!
!
!
!
!
!
!

• 20 radial basis functions, and 200 data points (black dots)	



• k-means clustering used for RBF centers	



• 105 points added for visualization
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Determining coordinates for nonlinear systems

• Koopman eigenfunctions can be used to provide useful 
coordinates for nonlinear systems (similar to diffusion maps)	



• Example: diffusion process on a "swiss roll"	



• First two Koopman eigenfunctions extract "length" and "width"	



• Diffusion maps extract only geometry 
Koopman extracts geometry and dynamics
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First eigenfunction Second eigenfunction



Summary

• The CDS community has had a major impact on 
fluid mechanics	



• Flow control	



• Coherent structures	



• Recent themes:	



• Analysis based on data	



• Finite-time
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