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Motivating example: control of cavity oscillations

® Model-based controller to suppress oscillations
® Full system: 2,000,000 states

® Control design based on low-order model with 2 states
[Rowley and Juttijudata, CDC 2005]
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Dynamics evolve on a high-dimensional space (or infinite-dim’l)
Project dynamics onto a low-dimensional subspace S

ker PS

Define dynamics on the subspace by

r=Psf(r) Ps:V — § isaprojection

Two choices:
choice of subspace

choice of inner product
(equivalently, choice of the nullspace for a non-orthogonal projection)



Why not use balanced truncation!?

Typically intractable for fluids simulations

Requires simultaneous diagonalization of controllability and

observability Gramians (non-sparse symmetric n X n matrices).
Even storing these is usually not possible:

Dimension Grid size n Storage
I 100 |0 39 KB
2 100 x 100 10 381 MB
3 100 x 100 x 100 |10 3.7TB




Approximate the Gramians using data from simulations
[Lall, Marsden, Glavaski, IFAC 1999]

Controllability Gramian: i = Ax + Bu

W, = / eA*BBT At gt
0

For a single-input system, let z(t) = e’ B be solution for z(0) = B

W. = / dtNZxkaz

Balanced POD: algorithm for computlng balancmg transformation

from data, analogous to "method of snapshots” for POD.
[Rowley, |BC 2005]

Net result: can compute the balancing
transformation directly from data, even for high-
dimensional systemes.

?



Balanced POD gives two sets of modes
Balancing modes ¢; determine the subspace to project onto
These are typically close to the POD modes

Adjoint modes 1); determine the direction of projection

Typically very different from POD modes
(adjoint)
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: T — Flow
Plane channel flow in a periodic box -

Consider linear development of small perturbations
Stable system, but large transient growth (non-normal)  f

Approach

Compare POD with Balanced POD XI ;

_ , initial condition
DNS, Re = 2000, 32x65x32 grid, 133,120 states (vertical velocity)
Try to capture linear dynamics with a reduced-order model

—d

POD eigenvalues

OP5, 99.72%
OP10, 99.9% |

KE growth
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POD modes 1-3

KE growth

POD model performance
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® 5-order model with modes 1,2,3,10,17 much better than 5-mode
model with modes |-5.

Conclusion: some low-energy POD modes are
very important for the system dynamics.
Can’t naively use just the most energetic ones.

POD modes 4-5
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BPOD models energy growth
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Three-mode BPOD model excellent at capturing the energy growth

Rank 8 BPOD model sufficient to correctly capture the dynamics of
the first five POD modes, compared to at least 23 POD modes

Explanation: BPOD weights modes by their observability, or dynamical

Importance, not just energy



100

80

60

40

20

POD singular value Bode plot

| | sburious pe'aks _
\\ «— in POD models

POD3

| ——POD 1-5

| ——POD1-3,10
——POD1-3,10,17
| —— POD1-17

| —— BPODS50

6 4 0 2

107 10 107° 10 10

Frequency (rad/sec)

Singular Values (dB)

80

60

40

20

BPOD singular value Bode plot

—__BPOD3

— BPOD4
——BPOD6
—BPOD10
——BPOD50

10~ 107 10° 10°

Frequency (rad/sec)

BPOD |0-mode OP 50-mode model taken as ‘full system’

POD poorly captures low-pass behavior, spurious peaks

damped modes)

BPOD models more “robust” than POD (no spurious lightly-



Outline

® Balanced models span{s,}

span{¢;}

® Galerkin projection
® Balanced truncation for fluids

® Example: channel flow

¢ Koopman operator

® Some history
® Koopman modes

® Examples

.2



Consider a nonlinear system (discrete time)
Xk_|_1 — f(Xk;)

Define the Koopman operator U as follows: for any scalar-valued
function g, U maps g into a new function

Ug(x) = g(f(x))

U is linear:

Ulagr + B92)(x) = aUgi(x) + BU g2 (x)

Koopman (193 1) proposed analyzing a dynamical system by studying
the spectral properties of U

Historical digression...



¢

Probably the preeminent American mathematician of his time
Taught at Wisconsin 1907-9

Moved to Princeton in 1909 as a preceptor in Mathematics;
became a professor in 191 |

Moved to Harvard in 1912
193 1: proved the ergodic theorem (age 47)



Bernard Osgood Koopman (1900-1981)

VoL. 17, 1931 MATHEMATICS: B. 0. KOOPMAN 315

HAMILTONIAN SYSTEMS AND TRANSFORMATIONS IN
HILBERT SPACE

By B. O. KooPMAN

DEPARTMENT OF MATHEMATICS, CoLUMBIA UNIVERSITY

Communicated March 23, 1931

In recent years the theory of Hilbert space and its linear transformations
has come into prominenct,l) It has been recognized to an increasing
extent that many of the most important departments of mathematical
physics can be subsumed under this theory. In classical physics, for
example in those phenomena which are governed by linear conditions—




John von Neumann (1903—1957)

® 1930: Moved to Princeton (from Germany) as an assistant
professor in Mathematics

® 1931/2: proved the mean ergodic theorem (age 28)
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John von Neumann by the IAS machine in 1952



Mean ergodic theorem (von Neumann, PNAS 1931/2)

His first paper published in English
Koopman translated it from German

PROOF OF THE QUASI-ERGODIC HYPOTHESIS

By J. v. NEUMANN
DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY

Communicated December 10, 1931

1. The purpose of this note is to prove and to generalize the quasi-
ergodic hypothesis of classical Hamiltonian dynamics® (or “‘ergodic hy-
pothesis,”’ as we shall say for brevity) with the aid of the reduction, recently
discovered by Koopman,? of Hamiltonian systems to Hilbert space, and
with the use of certain methods of ours closely connected with recent in-
vestigations of our own of the algebra of linear transformations in this
space.® A precise statement of our results appears on page 79.

We shall employ the notation of Koopman’s paper, with which we
assume the reader to be familiar. The Hamiltonian system of k2 degrees




von Neumann obtained his theorem first, and Birkhoff was aware of
his result

Birkhoff's paper appeared in Dec 1931, von Neumann's in Jan 1932!

Birkhoff and Koopman wrote a paper [PNAS, Mar 1932] setting the
record straight.

Detailed account: [J. Zund, Historia Mathematica 2002]

656 MATHEMATICS: G. D. BIRKHOFF Proc. N. A. S.

PROOF OF THE ERGODIC THEOREM

By GEORGE D. BIRKHOFF
DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY

Communicated December 1, 1931

Let

dx,- ' .
7 = Xi(xy, ... xa) (t=1,...m

be a system of n differential equations valid on a closed analytic manifold
M, possessing an invariant volume integral, and otherwise subject to the

same restrictions as in the preceding note, except that the hypothesis of
strong transitivity is no longer made.

We pronose to establish first that. without this hvoothesis. we have




Meanwhile, at Bell Labs...

® Nyquist stability criterion (1932)

Regeneration Theory
By H. NYQUIST

Regeneration or feed-back is of considerable importance in many appli-
cations of vacuum tubes. The most obvious example is that of vacuum tube
oscillators, where the feed-back is carried beyond the singing point. Another
application is the 21-circuit test of balance, in which the current due to the
unbalance between two impedances is fed back, the gain being increased
until singing occurs. Still other applications are cases where portions of
the output current of amplifiers are fed back to the input either unin-
tentionally or by design. For the purpose of investigating the stability of
such devices they may be looked on as amplifiers whose output is connected
to the input through a transducer. This paper deals with the theory of
stability of such systems.

PRELIMINARY DISCUSSION

HEN theoutput of an amplifier is connected to tl

a transducer the resulting combination may be
unstable. The circuit will be said to be stable when an
disturbance, which itself dies out, results in a response

o |

W-PLANE

Fig. 3—Illustrating case where amplifying ratio is real and greater than unity
{ﬁr two irciqltl)enc:les. but where nevertheless the path of integration does not include
e point 1, 0.
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Consider a nonlinear system (discrete time)

Xp+1 = f(xp)
and the corresponding Koopman operator U:
Ug(x) = g(f(x))
Suppose U has eigenvalues and eigenfunctions

Upj(x) = Ajp;(x),  j=12,...

Now, consider a vector-valued observable g(x). Expand g:

g(x) = Z p;(X)v;.

\

Koopman modes

Mezic, Nonlinear Dynamics, 2005
Rowley, Mezic, Bagheri, Schlatter; Henningson, ] Fluid Mech, 2009

20



Consider a linear system
f(x) = Ax
Find eigenvalues and eigenvectors (direct and adjoint):
AVj — )\jVj A*Wj — j\jo

Define
Y (X) — <X7Wj>

Then j are eigenfunctions of Koopman operator U:
Upj(x) = ¢j(Ax) = (Ax,w;) = (x, A"W;)
= Aj (%, W) = Ajp;(x)

For the observable g(x) = x, the Koopman modes are the
eigenvectors Vv;:

X:ZXWJ ngj
j=1

Koopman modes

"y

21



Suppose we have a nonlinear system

Xpt1 = f(xg)
with a periodic solution {xq,...,X;_1}

A common way to analyze periodic solutions is the discrete
Fourier transform: define a new set of vectors

{)A((),...,}A(m_l} XE — €

Koopman modes
Define a function on the finite set {Xq, ..., X1}

0, (Xk) _ 627m’jk/m

These are eigenfunctions of the Koopman operator U:

Upj(xx) = @ (f(xk)) = ©j (Xk+1)
_ 627Tij(k—|—1)/m 27Tij/m

=€ Pj(Xk)

Koopman modes are the discrete Fourier transform of the data
22



Dynamic Mode Decomposition (DMD)

Introduced by Peter Schmid [APS 2008]
Algorithm for computing Koopman modes [Rowley et al, JFM 2009]

Suppose we have a discrete-time dynamical system z — f(z)
and two sets of data:

X:[Xl Xo vt Xm} Y:[}ﬁ y2 - Ym}
with N f(Xj)
The DMD modes (or Koopman modes) are eigenvectors of
A=YX™T

where + denotes the Moore-Penrose pseudoinverse.
Each DMD mode V; evolves according to v; — A,V

J.-Tu et al, "On Dynamic Mode Decomposition: Theory and Applications,"
arXiv:1312:0041 [math.NA].

?
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Example: jet in crossflow

® Linearize a jet in crossflow about an unstable equilibrium

R€5S = 165
V}et/Uoo =3 ”~ :s‘
5g/D=1/3 &

Instantaneous snapshot Mean Unstable equilibrium

® Compute global modes, compare frequencies with observed
frequencies in shear layer and near-wall fluctuations

Observec Global mode
Shear layer St=0.14 St =0.169 -
requency
PR
Near wall St = 0.0174 St = 0.043 <[  Mismateh

[Bagheri, Schlatter, Schmid, Henningson, JFM 2009] 24




Koopman modes

¢ High-frequency mode captures
structures in the shear layer

St =0.141

® Low-frequency mode captures
near-wall structures associated
with horseshoe vortex

St =0.017

25



Separated flat plate

® No forcing

® Forcing at f* = 6.4




No forcing

fr=10.56

Koopman modes

Forcing at f* = 4.7

fr=14.16
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Almost invariant sets in the double gyre

® Approximate Koopman operator using (extended) DMD

® Compute almost-invariant sets, which are related to

eigenfunctions of a modified Koopman operator
[Froyland & Dellnitz, 2003] [Froyland 2005]

Second eigenfunction Third eigenfunction

28



Coherent sets in the Philippine Sea

® Compute coherent sets from ocean drifter data

® Simulated drifter trajectories generated from a numerical model
for the velocity field near the Philippines (with I. Rypina, WHOI)
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® 20 radial basis functions, and 200 data points (black dots)
® k-means clustering used for RBF centers

® |0° points added for visualization




Determining coordinates for nonlinear systems

® Koopman eigenfunctions can be used to provide useful
coordinates for nonlinear systems (similar to diffusion maps)

® Example: diffusion process on a "swiss roll"
® First two Koopman eigenfunctions extract "length” and "width"

¢ Diffusion maps extract only geometry
Koopman extracts geometry and dynamics

First eigenfunction Second eigenfunction

-10.0 -10.0
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The CDS community has had a major impact on
fluid mechanics

Flow control
Coherent structures

Recent themes:

Analysis based on data
Finite-time

31
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