

Combination Therapy is a Control Problem

Evolutionary dynamics:

$$\dot{x} = \left(A - \sum_{i} u_i D^i\right) x$$

Each state x_k is the concentration of a mutant. (There can be hundreds!) Each input u_i is a drug dosage.

A describes the mutation dynamics without drugs, while D^1, \ldots, D^m are diagonal matrices modeling drug effects.

Determine $u_1, \ldots, u_m \ge 0$ with $u_1 + \cdots + u_m \le 1$ such that xdecays as fast as possible!

[Jonsson, Rantzer, Murray, ACC 2014]

Using Measurements of Virus Concentrations

Evolutionary dynamics:

$$\dot{x}(t) = \left(A - \sum_{i} u_i(t)D^i\right)x(t)$$

Can we get faster decay using time-varying u(t) based on measurements of x(t) ?

Optimizing Decay Rate

Stability of the matrix $A - \sum_i u_i D^i + \gamma I$ is equivalent to existence of $\xi > 0$ with

$$(A - \sum_{i} u_i D^i + \gamma I)\xi < 0$$

For row k, this means

$$A_k\xi - \sum_i u_i D_k^i \xi_k + \gamma \xi_k < 0$$

or equivalently

$$\frac{A_k\xi}{\xi_k} - \sum_i u_i D_k^i + \gamma < 0$$

Maximizing γ is convex optimization in $(\log \xi_i, u_i, \gamma)$!

Convex Monotone Systems

The system

$$\dot{x}(t) = f(x(t), u(t)),$$
 $x(0) = a$

is a monotone system if its linearization is a positive system. It is a *convex monotone system* if every row of *f* is also convex.

Theorem. [Rantzer/ Bernhardsson (2014)]

For a convex monotone system $\dot{x} = f(x, u)$, each component of the trajectory $\phi_t(a, u)$ is a convex function of (a, u).

Using Measurements of Virus Concentrations

The evolutionary dynamics can be written as a convex monotone system:

$$rac{d}{dt}\log x_k(t) = rac{A_k x(t)}{x_k(t)} - \sum_i u_i(t) D_k^i$$

Hence the decay of $\log x_k$ is a convex function of the input and optimal trajectories can be found even for large systems.

$$A = \begin{bmatrix} -\delta & \mu & \mu & 0 \\ \mu & -\delta & 0 & \mu \\ \mu & 0 & -\delta & \mu \\ 0 & \mu & \mu & -\delta \end{bmatrix}$$

Example

clearance rate $\delta = 0.24 \, \mathrm{day}^{-1}$, mutation rate $\mu = 10^{-4} \, \mathrm{day}^{-1}$ and replication rates for viral variants and therapies as follows

Variant	Therapy 1	Therapy 2	Therapy 3
Wild type (x_1)	$D_1^1 = 0.05$	$D_1^2 = 0.10$	$D_1^3 = 0.30$
Genotype 1 (x_2)	$D_2^{\bar{1}} = 0.25$	$D_2^{ar{2}} = 0.05$	$D_2^{\bar{3}} = 0.30$
Genotype 2 (x_3)	$D_3^{\overline{1}} = 0.10$	$D_3^{\overline{2}} = 0.30$	$D_3^{\overline{3}} = 0.30$
HR type (x_4)	$D_4^{ar{1}} = 0.30$	$D_4^{ar{2}} = 0.30$	$D_4^{\bar{3}} = 0.15$

Thanks CDS — Open, Dynamic, Inspiring!

Example

- Provably correct interconnected systems
- Large-scale control
- From Power Systems to HIV, Cancer and Back

