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CDS and Optimization

Why optimization?

The underlying machinery for much of CDS:
@ Robustness analysis (small gain, 1, IQCs, SOS, etc.) — Andy'’s talk
@ MPC, on-line optimization — Manfred's talk

@ Variational principles

Control = optimization + (temporal) structure

Goal: decouple optimization difficulties (nonlinearity, nonconvexity, etc.)

from dynamical aspects.
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Representations of convex sets

Question: representability of convex sets

Existence and efficiency:
@ When is a convex set representable by conic optimization?

@ How to quantify the number of additional variables that are needed?

Given a convex set C, is it possible to repre-

sent it as
C=mn(KnNL)

where K is a (fixed) cone, L is an affine sub-
space, and 7 is a linear map?
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Representations of convex sets [S]EI TSI

“Extended formulations” and polytopes

What happens in the case of polytopes?
P={xecR": fTx <1}

(WLOG, compact with 0 € int P).

Polytopes have a finite number of facets f; and vertices v;.
Define a nonnegative matrix, called the slack matrix of the polytope:

[Splj=1—fv;, i=1,...,|F| j=1,...,|V|
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Representations of convex sets [S]EI TSI

Example: hexagon (I)

Consider a regular hexagon in the plane.

It has 6 vertices, and 6 facets. Its slack matrix has rank 3, and is

SH

O NN BEO
HF NN RFR OO
NNNRERE OO
NP OOFEDN
H OO, NN
OO L, NN

“Trivial” representation requires 6 facets. Can we do better?
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Conic factorizations Factorizations and representability

Cone factorizations and representability

“Geometric” LP formulations exactly correspond to “algebraic”
factorizations of the slack matrix.

For polytopes, this amounts to a nonnegative factorization of the slack
matrix:

51_']':<3,',bj>7 I':]_,...,V, J:]'”f

where a;, b; are nonnegative vectors.

Theorem (Yannakakis 1991): The minimal lifting dimension of a polytope
is equal to the nonnegative rank of its slack matrix.
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Factorizations and representability
Example: hexagon (II)

Regular hexagon in the plane.

Its slack matrix is

001221
1001 2 2
Sy = 21 0012
2 21001
122100
012210

Nonnegative rank is 5.
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Factorizations and representability
Beyond LPs and nonnegative factorizations
LPs are nice, but what about broader representability questions?

In [GPT11], a generalization of Yannakakis’ theorem to the general convex
case. General theme:

“Geometric” extended formulations exactly correspond to “algebraic”
factorizations of a slack operator.

polytopes/LP convex sets/convex cones

slack matrix slack operators
vertices extreme points of C
facets

extreme points of polar C°
nonnegative factorizations conic factorizations

Sij:<ai7bj>7 ai>0,b;>0 SU:(a;,bj>, ai€ K,bj € K*
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Positive semidefinite rank

Polytopes, semidefinite programming, and factorizations

Even for polytopes, PSD factorizations can be interesting.

Well-known example: the stable set or independent set polytope.

For perfect graphs, we have efficient SDP representations, but no known
subexponential LP.

Natural notion: positive semidefinite rank ([GPT 11]).
Exactly captures the complexity of SDP-representability.
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Positive semidefinite rank

PSD rank of a nonnegative matrix

Let M € R™*" be a nonnegative matrix.

Definition [GPT11]: The PSD rank of M, denoted rankpsg, is the smallest
r for which there exists r x r PSD matrices {A1,...,An} and
{Bi, ..., By} such that

Mj; = trace A;B;, i=1

g ooy
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Positive semidefinite rank

PSD rank of a nonnegative matrix

Let M € R™*" be a nonnegative matrix.

Definition [GPT11]: The PSD rank of M, denoted rankpsg, is the smallest
r for which there exists r x r PSD matrices {A1,...,An} and
{Bi, ..., By} such that

Mj; = trace A;B;, i=1....m j=1...n

Natural generalization of nonnegative rank. “Quantum” analogue of
nonnegative factorizations.

PSD rank of slack matrix determines the "best” semidefinite lifting.
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Positive semidefinite rank

PSD rank of a nonnegative matrix

Let M € R™*" be a nonnegative matrix.

Definition [GPT11]: The PSD rank of M, denoted rankpsg, is the smallest
r for which there exists r x r PSD matrices {A1,...,An} and
{Bi, ..., By} such that

Mj; = trace A;B;, i=1....m j=1...n

Natural generalization of nonnegative rank. “Quantum” analogue of
nonnegative factorizations.

PSD rank of slack matrix determines the "best” semidefinite lifting.

E.g., for the regular hexagon, PSD rank is 4.
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Rank lower bounds PSD rank

Orbitopes and equivariant lifts

Special class of convex bodies: regular orbitopes

C ={conv(g-x) : g € G},

where G is a compact group.

Many important examples: hypercubes, hyperspheres, nuclear norm,
Grassmannians, Birkhoff polytope, parity polytope, cut polytope, ...
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Rank lower bounds PSD rank

Orbitopes and equivariant lifts

Special class of convex bodies: regular orbitopes

C ={conv(g-x) : g € G},

where G is a compact group.

Many important examples: hypercubes, hyperspheres, nuclear norm,
Grassmannians, Birkhoff polytope, parity polytope, cut polytope, ...

For many reasons, important to look at “symmetric” (or equivariant) lifts.
Informally, the lift “respects” the symmetries of the convex body C.
Formally, there is a group homomorphism p : G — GL(R?) such that

@ L is invariant under conjugation by p,

@ p ‘“intertwines” the lift map:
m(p(T)Yp(T)T) = Tr(Y), VT eGvYesinL
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Rank lower bounds PSD rank

A structure theorem for equivariant lifts

Equivariant lifts of orbitopes are particularly nice.

Why?: Every equivariant SDP lift is of sum of squares type.
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Rank lower bounds PSD rank

A structure theorem for equivariant lifts

Equivariant lifts of orbitopes are particularly nice.

Why?: Every equivariant SDP lift is of sum of squares type.
More formally:
Theorem [FSP 13]: Let P be a G-regular orbitope, with a G-equivariant

lift of size d. Then for any linear form £ nonnegative on P, there exist
functions f; € V such that

bmax — U(x) = Y _fi(x)*  VxeX
j

where X = ext(P), and V is a G-invariant subspace of F(X).
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Rank lower bounds PSD rank

Lower bounding size of representations

Why is this useful?

Can use representation theory to understand invariant subspaces of F(X).

For polytopes, these are finite-dimensional subspaces of polynomials.
Computing their dimensions, we obtain lower bounds on symmetric
representations.
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G
Parity and cut polytopes

The parity polytope PAR,, is the convex hull of all points x € {—1,1}"
that have an even number of —1.

Theorem [FSP13]: Let PAR, be the parity polytope. Then, any
[ parity-equivariant psd lift of PAR, must have size > ((n'/’”).

The cut polytope is defined as
CUT, = conv(xxT : x € {—1,1}").

Theorem [FSP13]: Any psd lift of CUT, that is equivariant with respect
to the cube (hyperoctahedral) group must have size > ((n’/'ﬂ).
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The End

SEMIDEFINITE OPTIMIZATION
and CONVEX ALGEBRAIC GEOMETRY

Thank You!

Want to know more?
@ G. Blekherman, P.A. Parrilo, R. Thomas (eds.), Semidefinite Optimization and Convex
Algebraic Geometry, SIAM, 2013.

@ J. Gouveia, P.A. Parrilo, R. Thomas, Lifts of convex sets and cone factorizations,
Mathematics of Operations Research, 38:2, 2013.

@ J. Gouveia, P.A. Parrilo, R. Thomas, Approximate cone factorizations and lifts of
polytopes, arXiv:1308.2162.

@ H. Fawazi, P.A. Parrilo, Exponential lower bounds on fixed-size psd rank and semidefinite
extension complexity, arXiv:1311.2571.

@ H. Fawazi, J. Saunderson, P.A. Parrilo, Equivariant semidefinite lifts and sum-of-squares
hierarchies, arXiv:1312.6662.

@ H. Fawzi, J. Gouveia, P.A. Parrilo, R. Robinson, R. Thomas, Positive semidefinite rank,
arXiv:1407.4095.
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Example: hexagon (II1)

A nonnegative factorization:

Sy =

1 0
10

0
0
0
0

[ =)

1
0
0
0
1

2

0
0
1
0
0
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