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CDS and Optimization

Why optimization?

The underlying machinery for much of CDS:

Robustness analysis (small gain, µ, IQCs, SOS, etc.) – Andy’s talk

MPC, on-line optimization – Manfred’s talk

Variational principles

Control = optimization + (temporal) structure

Goal: decouple optimization difficulties (nonlinearity, nonconvexity, etc.)
from dynamical aspects.
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Representations of convex sets

Question: representability of convex sets

Existence and efficiency:

When is a convex set representable by conic optimization?

How to quantify the number of additional variables that are needed?

Given a convex set C , is it possible to repre-
sent it as

C = π(K ∩ L)

where K is a (fixed) cone, L is an affine sub-
space, and π is a linear map?
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Representations of convex sets Slack operators

“Extended formulations” and polytopes

What happens in the case of polytopes?

P = {x ∈ Rn : f T
i x ≤ 1}

(WLOG, compact with 0 ∈ int P).

Polytopes have a finite number of facets fi and vertices vj .
Define a nonnegative matrix, called the slack matrix of the polytope:

[SP ]ij = 1− f T
i vj , i = 1, . . . , |F | j = 1, . . . , |V |
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Representations of convex sets Slack operators

Example: hexagon (I)

Consider a regular hexagon in the plane.

It has 6 vertices, and 6 facets. Its slack matrix has rank 3, and is

SH =



0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

 .

“Trivial” representation requires 6 facets. Can we do better?
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Conic factorizations Factorizations and representability

Cone factorizations and representability

“Geometric” LP formulations exactly correspond to “algebraic”
factorizations of the slack matrix.

For polytopes, this amounts to a nonnegative factorization of the slack
matrix:

Sij = 〈ai , bj〉, i = 1, . . . , v , j = 1, . . . , f

where ai , bi are nonnegative vectors.

Theorem (Yannakakis 1991): The minimal lifting dimension of a polytope
is equal to the nonnegative rank of its slack matrix.
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Conic factorizations Factorizations and representability

Example: hexagon (II)

Regular hexagon in the plane.

Its slack matrix is

SH =



0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

 .

Nonnegative rank is 5.
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Conic factorizations Factorizations and representability

Beyond LPs and nonnegative factorizations

LPs are nice, but what about broader representability questions?

In [GPT11], a generalization of Yannakakis’ theorem to the general convex
case. General theme:

“Geometric” extended formulations exactly correspond to “algebraic”
factorizations of a slack operator.

polytopes/LP convex sets/convex cones

slack matrix slack operators
vertices extreme points of C
facets extreme points of polar C ◦

nonnegative factorizations conic factorizations
Sij = 〈ai , bj〉, ai ≥ 0, bj ≥ 0 Sij = 〈ai , bj〉, ai ∈ K , bj ∈ K ∗
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Positive semidefinite rank

Polytopes, semidefinite programming, and factorizations

Even for polytopes, PSD factorizations can be interesting.

Well-known example: the stable set or independent set polytope.

For perfect graphs, we have efficient SDP representations, but no known
subexponential LP.

Natural notion: positive semidefinite rank ([GPT 11]).
Exactly captures the complexity of SDP-representability.
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Positive semidefinite rank

PSD rank of a nonnegative matrix

Let M ∈ Rm×n be a nonnegative matrix.

Definition [GPT11]: The PSD rank of M, denoted rankpsd , is the smallest
r for which there exists r × r PSD matrices {A1, . . . ,Am} and
{B1, . . . ,Bn} such that

Mij = trace Ai Bj , i = 1, . . . ,m j = 1, . . . , n.

Natural generalization of nonnegative rank. “Quantum” analogue of
nonnegative factorizations.

PSD rank of slack matrix determines the “best” semidefinite lifting.

E.g., for the regular hexagon, PSD rank is 4.
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Rank lower bounds PSD rank

Orbitopes and equivariant lifts

Special class of convex bodies: regular orbitopes

C = {conv(g · x0) : g ∈ G},

where G is a compact group.

Many important examples: hypercubes, hyperspheres, nuclear norm,
Grassmannians, Birkhoff polytope, parity polytope, cut polytope, . . .

For many reasons, important to look at “symmetric” (or equivariant) lifts.
Informally, the lift “respects” the symmetries of the convex body C .
Formally, there is a group homomorphism ρ : G → GL(Rd ) such that

L is invariant under conjugation by ρ,

ρ “intertwines” the lift map:
π(ρ(T )Y ρ(T )T ) = Tπ(Y ), ∀T ∈ G ,∀Y ∈ Sd

+ ∩ L.
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Rank lower bounds PSD rank

A structure theorem for equivariant lifts

Equivariant lifts of orbitopes are particularly nice.

Why?: Every equivariant SDP lift is of sum of squares type.

More formally:
Theorem [FSP 13]: Let P be a G -regular orbitope, with a G -equivariant
lift of size d . Then for any linear form ` nonnegative on P, there exist
functions fj ∈ V such that

`max − `(x) =
∑

j

fj (x)2 ∀x ∈ X

where X = ext(P), and V is a G -invariant subspace of F(X ).
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Rank lower bounds PSD rank

Lower bounding size of representations

Why is this useful?

Can use representation theory to understand invariant subspaces of F(X ).

For polytopes, these are finite-dimensional subspaces of polynomials.
Computing their dimensions, we obtain lower bounds on symmetric
representations.
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Rank lower bounds PSD rank

Parity and cut polytopes

The parity polytope PARn is the convex hull of all points x ∈ {−1, 1}n

that have an even number of −1.

Theorem [FSP13]: Let PARn be the parity polytope. Then, any
Γparity -equivariant psd lift of PARn must have size ≥

( n
dn/4e

)
.

The cut polytope is defined as

CUTn = conv(xxT : x ∈ {−1, 1}n).

Theorem [FSP13]: Any psd lift of CUTn that is equivariant with respect
to the cube (hyperoctahedral) group must have size ≥

( n
dn/4e

)
.
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END

The End

Thank You!
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This book provides a self-contained, accessible introduction to the mathematical 
advances and challenges resulting from the use of semidefinite programming in 
polynomial optimization. This quickly evolving research area with contributions from the 
diverse fields of convex geometry, algebraic geometry, and optimization is known as 
convex algebraic geometry.

Each chapter addresses a fundamental aspect of convex algebraic geometry. The book 
begins with an introduction to nonnegative polynomials and sums of squares and their 
connections to semidefinite programming and quickly advances to several areas at the 
forefront of current research. These include

•   semidefinite representability of convex sets,
•   duality theory from the point of view of algebraic geometry, and 
•   nontraditional topics such as sums of squares of complex forms and 

noncommutative sums of squares polynomials.

Suitable for a class or seminar, with exercises aimed at teaching the topics to 
beginners, Semidefinite Optimization and Convex Algebraic Geometry serves as a point 

of entry into the subject for readers from multiple communities such 
as engineering, mathematics, and computer science. A guide to the 
necessary background material is available in the appendix. 

This book can serve as a textbook for graduate-level courses 
presenting the basic mathematics behind convex algebraic geometry 
and semidefinite optimization. Readers conducting research in these 
areas will discover open problems and potential research directions. 
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Mathematics of Operations Research, 38:2, 2013.
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polytopes, arXiv:1308.2162.
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END

Example: hexagon (III)

A nonnegative factorization:

SH =



1 0 1 0 0

1 0 0 0 1

0 0 0 1 2

0 1 0 0 1

0 1 1 0 0

0 0 2 1 0





0 0 0 1 2 1

1 2 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1


.
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