Controlling the Internet in the era of Software – Defined and Virtualized Networks

Fernando Paganini
Universidad ORT Uruguay

CDS@20, Caltech 2014
Motivation

1. The Internet grew in its first 30 years with limited role of mathematical theory.

2. Theory based on economics+optimization+control developed since late 90s for protocols and resource allocation. Some (limited) practical impact.

3. The ground is shifting at the technical level with new paradigms: software-defined networks, virtualization.

4. Is there a role of CDS-type theory in this new era? What remains relevant? New challenges?
A network of worldwide scale...

Each dot is AS, radius indicates connectivity

Source: http://www.caida.org
Core AS’s are backbones
Outer AS’s, access networks, ...
Links have different technologies.
Was it ever “under control”?

- No single function
- No common authority
- Changes all the time

Most control confined to within each AS.

But some global functionalities are required:
- Ensuring connectivity
- Regulating transport.

Protocols
Two objectives and design premises

Ensuring global connectivity for changing networks: global addressing (IP), plus control of “logical state” under the premise of decentralization.
Two objectives and design premises

Ensuring global **connectivity** for changing networks: global addressing (IP), plus control of “logical state” under the **premise of decentralization**.

Regulating **transport** (TCP) under the **premise that bandwidth is scarce**, requires **feedback control**.
Congestion control

Regulate traffic sources to fit available capacity using congestion feedback.

However:
- \(\sim 10^9 \) hosts on the Internet!
- Decentralized decisions, **coupled** outcome.
- Not your standard feedback design!

Proposal (Kelly, late 90s):
To study **decentralized** allocation of **scarce bandwidth** resources: turn to **economic theory**:

A utility \(U_i(x_i) \) for each flow of rate \(x_i \).
A price \(p_l \) for each scarce resource (e.g. link rate \(y_l \leq c_l \)).
Network Utility Maximization

\[
\max_x \sum_i U_i(x_i), \text{ subject to } y_l = \sum R_{li} x_i \leq c_l, \forall l.
\]

- Optimization algorithms become dynamic control laws.
- Gradient (primal or dual) steps use decentralized info.

Impact: interpret current protocol behavior, propose alternatives: e.g. (Fast TCP, Low et al.).
Cross-layer optimization

- Dynamic control in other layers: routing, medium access, admission of connections, etc.
- Can we jointly design them through a global NUM?
- Ideally, optimization decomposition should dictate layering [Chiang-Low-Calderbank-Doyle ’07].
- Highlights from my group’s work (’06-’10):
 - Joint control of TCP and number of connections
 - Joint congestion control and multipath routing
 - Cross-layer control of MAC+ transport layer for wireless networks
Optimization in Traffic Engineering

TE: distribute traffic inside an AS

Given: network and demands x^k of rate per $k = (s, d)$ pair.

Multicommodity optimization:

$$\min \sum \phi_l(y_l), \text{ s.t. } y_l = \sum y^k_l, \ y^k_l \geq 0,$$

$$\sum_{l \in \text{in}} y^k_l = \sum_{l \in \text{out}} y^k_l \text{ at interior node;} \ \sum_{l \in \text{out}} y^k_l = x^k \text{ at source node of flow } k.$$

- Requires multipath routing, not standard in IP. Workaround:
 - define end-to-end forwarding paths, implement via MPLS.
 - optimize offline for path rates, impose on paths.

$$\min \sum \phi_l(y_l), \text{ s.t. }$$

$$y_l = \sum_r R_{rl} z_r, \ \sum_{r \in k} z_r = x^k \ \forall \ k.$$
Dynamic Traffic Engineering

- If demands vary, use congestion feedback to control either:
 - Input rates in predefined end-to-end paths.
 - Routing splits at nodes, per destination.
- Integrates with congestion control [Kelly et al. ’98, Han et al ’03, Voice ’07, P’ Mallada ‘09].
- No strict convexity. To avoid oscillations, modify gradient laws.
- Practical impact? So far, essentially zero (but see recent efforts by Kevin Tang’s group at Cornell).
- Reasons: legacy constraints on IP routing, also the **scarcity premise** rarely holds inside AS!
 - ISPs deliberately choke input traffic, overprovision core. Simplifies management, resilience.
 - Good for charging for access!
The mandate on decentralization means that the control plane (which figures out how packets are routed) should have the topology of the data plane (which actually forwards the packets).

In particular: control algorithms should involve message passing among neighboring routers.
Software – Defined Network

[as defined by McKeown, IET Appleton Lecture ‘14]

A network in which the control plane is physically separate from the forwarding plane.

and

A single control plane controls several forwarding devices.

- Runs on a centralized, general purpose computer
- Runs on specialized hardware (ASIC)
Implications

- A computer with global network info makes traffic control decisions, imposes them on “dumb” forwarding devices.
- Open source protocols (OpenFlow) allow interaction between planes. Business implications.
- Makes sense at AS scale (where TE is done).
- Our decentralization premise has been removed! Proponents educate us on the advantages of centralized control! Of course we knew this…
- Can now do centralized multicommodity optimization. Best interior point method in lieu of gradient descent.
- Less need for cute microeconomics, or for dynamics in solving the resource allocation.
- Control over network issues may appear.
One step further: network virtualization

- Once a global network view sits in a centralized server, this view can be further abstracted.
 - **Abstraction**: offer a simpler view of the network, avoiding details of the topology, for use by an application that demands services on it.

- Virtualization is a popular device in computers: e.g. install a virtual machine that emulates Windows while running on a Linux OS.

- Analogy:
 forwarding plane is hardware, control plane is OS, virtualization allows this network to emulate another.
Network virtualization

Abstract Network View

Network Virtualization

Global Network View

Network OS

Packet Forwarding

Packet Forwarding

Packet Forwarding

Packet Forwarding

Packet Forwarding
Example: abstracting connectivity
(from Scott Shenker, 2012)

Abstract network view

Operator specifies abstract control: A can’t talk to B

Network Virtualization

Gets “compiled” to constraints on global network view, then to forwarding plane.
Can we abstract transport?

Abstract network view

How much bandwidth can we offer A → B?

Answer coupled nontrivially with other flows (polytope in rate space).

Hard to abstract, unless core is highly overprovisioned.
Discussion

- Abstraction is pervasive in software engineering, enabler for layered innovation.
- But performance considerations often don’t make it through the “hourglass”. Performance degrades unless hardware keeps running faster.
- Similar things can happen with virtualized networks. Unless the forwarding core is overprovisioned to an even greater degree than in current ISPs.
In an abstracted network, role of CDS?

- Idealized connectivity, bottlenecks in access.
- Focus moves to the *Content* layer outside.
- Centrally planned CDN, or unstructured peer-to-peer.

Content dissemination dynamics in p2p

- Peers arrive at a network to download file, exchange pieces with other following reciprocity rules.

Depart some time after completion. Issues:

 - Population dynamics.
 - Download progress dynamics.
Highlights from our work on p2p dynamics

- **PDE model** for population as a function of time and download progress

 \[\frac{\partial F(t, \sigma)}{\partial t} = \lambda + r(F, y, \sigma) \frac{\partial F(t, \sigma)}{\partial \sigma} \]

 Results: equilibrium, stability, noise response, transient times.

- Multi-class versions for networks with heterogeneous access:
 Global stability invoking tools of monotone dynamical systems.
 [P'-Ferragut, CDC 13 -14].

- Reciprocity and proportional fairness: Sinkhorn iteration, Gibbs sampling
 [Zubeldía-Ferragut-P', Allerton13]

- M/G processor sharing queues and stochastic fluid limits in P2P networks
 [Ferragut, Stochastic Networks 14]
Some final thoughts

- Holy grail for us CDS-types: theory that is both mathematically deep and practically relevant.

- These objectives are often at odds: Practicioners favor simple (non-mathematical) building blocks and interfaces.

- The most popular “hourglasses” are those with no math in the ‘waist’. Fast innovation, but loses quantitative view.

- In network control, we had success in coming up with “mathematical” layering interfaces based on duality and prices. Impact ran into legacy constraints.

- New developments (SDN, virtualization) open up the field again! But beware of too simple interfaces!

- Regardless: there are interesting opportunities with a content-centric view of the network.