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SISO design: generalize neg feedback around integrator is good

Suppose (.5) has no poles or zeros

in CRHP. Assume

= p>0, z>0, H(O) > (; and

—Ss+ 2
L(S): 2 m(e
$2 + w% s™(s — p)

H{(s)

= [ (s) has one gain-crossover point, w,,
and 3p <w, < 1/3 z, and w, > wg

= The Iogclﬁg S!ﬂ&? of |L| satisfies

0> > —1.5

dlogpw |, [%’\/—%]

= Qutside this interval, the magnitude is
» greater than 2, or less than 0.5
Then, the closed-loop system is stable and
has modest phase (and gain) margins,
and the peak of |S] is less than 2.5
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Proof. Nyquist and Bode-Phase theorem

dlog,o |H
dlog,y |L| ~ _9  —m 0 _q 810 | H|
dloglOw Ww=w, 1 1 I T dloglow w=w,
7w dlogyy |L| 1 1 1
A ~ - - = (=
O A N T w:wc_ L(s) : P (—s+2) p— H(s)

T
ALL,[O—)wC] ~ T —m§ 0 A4H,[0—>wc]
~ dlogy, | H| )
2 dloggw |,_,
Z L]
o > Now use assumption:
= The loglog slope of |L| satisfies
7 p L
1 SAspjosw] ST < ! 0> dlogy |L] > —1.5

d loglO w we [%,\/ﬁwc]
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Graphical Interpretation

Total, net phase change
from O to crossover

1 —s+z
52 +w% sm(s —p)

L(s) == H(s)

Conditions imply that actual Nyquist plot
of L will just be a complicated version of
4 this, giving 1 encirclement (as needed)
and adequate distance from -1

AUGUST 2014, CALTECH



Prototypical robustness analysis by control community

Components
Relations among variables

External variables (d)
Selected internal variables (e)

Interconnection

Equates variables of “communicating”
components

Implicitly gives (d/e) relation

Robustness question

Uncertain components
Uncertainty is quantified at component level

Quantify uncertainty in (d/e) relation
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How is component uncertainty quantified?

o List of quadratic (in)equalities that variables it
relates are guaranteed to satisfy

= “Certain”: just a special case of uncertain

= Uncertainty in (d/e) is quantified in same manner —
certify that (d/e) relation always satisfies specific
guadratic inequalities
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LTI version, with certain & and uncertain I’

w1

Gy

'GM

2l

'

w2

zZ2

— each FDLTI, with proper transfer function, and
stabilizable/detectable state-space description

— constant interconnection matrix

— well-posed: for any initial conditions and any
piecewise-continuous inputs Wil , w2, d,
there exist unique solutions to the
interconnection

= For a well-posed interconnection, a state-space
model or proper transfer function description

for the map from (d,w) to (&,2) can be
derived.

— stable if the resultant state-space model is

internally stable — eigenvalues of it's " A" matrix
are in the open, left-half plane
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Answers, separate from uncertain analysis

w1 Gl
> ..
: z
Gy 1
q1
<+~
e
-
-
q2
>
w2

Well-posed if and only if

H H
det [ 17— 11 13
H31  Hsg

& T, € RY*®

Stable if and only if
Tw, € RH3®

Quantify gain
[ Tae |l o
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Simplest assumptions on unknown elements

1. I'y is a stable linear system, known only to satisfy ||[I'x||. < 1;

2. I'y is a stable linear system of the form -y, I, where the scalar
linear system -y, is known to satisfy ||v.||, < 1;

3. I'y is a constant gain, of the form ~y, I, where the scalar v, € R

is known to satisfy —1 < vy, < 1. " G
. -
Is the interconnection well-posed and @
stable for all possible values of I'? ¢ ) d
If so, is the |||, gain from d — e @ )
< 1 for all possible values of I'? ry o
™ T
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Interconnection: robust well-posedness and stability

Interconnection is well-posed at
det (I — G(OO)HH) 75 0 wq G1

V :=G(s)(I - H1G(s)) ' e R**® ..GM 21

Inter?p:n: n(e]E:S?]n Jﬁ’g%ﬁ!s)at c RE* @
M = Hz3 + H31VHq3 € RH;OX.
X =1-TM

Y

A

v
A~
S¥

Intergonnectogiswelyposed et () £ 0. r, o

X1 is proper Wo

Y

Interdgr{dection idbtableatlet (X (so)) #0 Vsp € Cy
X' cRH Non-vanishing determinant conditions
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Complex numbers mimicking dynamic systems

Theorem: Given a positive @ > 0, and a complex number ¢, with
Imag (&) # 0, there is a 8 > 0 such that by proper choice of sign

+ ’5’ S — ﬁ _ 5 - _Nyquist Diagram 4306 Bode Diagram
S+ ﬁ S=j@ ol T 4.3261
(0]
| 54.3261
£ 43261
. _ 1 <)
Givenw > 0and G € RHZOXRZ g S 43261 %
> 05 4.3261
_ . @
JA € C™*™, & (A) < a with g 0 4:3261
©
£-05 —
-_ (@]
det(T — G(j@)A) = 0 1 guos
Q
t 15 § 90
2 45
nxn .
dT e RH", ||| < a with . ) | | |
2 -1 0 1 2 10" 10 10 16
. . Real Axis Frequency (rad/s)
det(I — G(jw)I'(jw)) =0
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Gain as robustness

T -
—
N Vv
00
- Ap
Stable, well-posed for all ||Ap|, <1
» A
» A
B formulate as
y
M &1 ! « ‘?
< M .
|— .=
0.9)
> AF

AUGUST 2014, CALTECH



Importance of the nonvanishing determinant condition

L. . J. Doyle, “Analysis of feedback
e new definition to formahze, systems with structured uncertain-
. . ties,” IEFE Proceedings, part D, vol.

e separate arithmetic from system theory. 129. 10. 6, pp. 242-250, 1982,

Example: a problem-specific set of block diagonal matrices, say,

A = {diag [5TI, 01, AF] 0" eR,0°€ C,Af € Cfxf} C CnXn

For M € C™"*™ define

1
pa (M) = min { (A): A € A,det (I — MA) = 0}

unless no A € A makes (I — MA) singular, then ua (M) := 0.
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A general A C C™*"™ is of the same form
A = {dlag [57"11;756[,07AF] : 57’ - R’ 56 e C,AF c Cfxf} g C’I’LXn

but likely include many instances of the 3 elements considered.

1
min {7 (A) : A € A,det (I — MA) =0}

pa (M) =

o ua : C"" 5 R

e Smallest (measured in & (-)) root, drawn from A, of the polynomial equation
det (I — MA) =0

e For any o € R, u(aM) = |aju (M)
o ua (M) < liff det(I — MA)#0 VAe{AeA:6(A)<1}=:Ba



Maximum-modulus

For M € RH2*™, and any block-structure A,

maX{ sup  pa (M(s)) ALA(Moo)} =
Re(s)>0

macx{ sup pa (01 () s (M) |
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Continuity

pua : C"™ — R is upper-semicontinuous, but (in general) not continuous

e If A only consists of complex blocks, then pua : C"*"” — R is continuous
e If A has no repeated-reals, then ua : R"*™ — R is continuous

e Suppose A is a diagonal concatenation of uncertainty sets, one with only real
blocks, and one with only complex blocks. Denote these as Ar and Ac. So

A = {diag [AR,Ac] : Ap € AR, A¢ € Ac} Cc cnxn

I 0 Mll M12 AR 0 B B
det(lo j}_le Mm]l 0 Ac ])—det([ MA)

If pag (Mi1) < pa (M), then pa : C**™ — R is continuous at M.
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Guaranteeing continuity

4 09 4 Im Create singularity using
o— AR AC only Agr (with Ag :=0)
: o = (B R
1 e

Likewise, if ua is not continuous at M, then puay (Mi1) = pa (M). This means
“the complex blocks do not matter” and hence can be set to 0.

4 09 4 Im Create singularity using
r-——1-Q- AR AC both AR and AC
1 b N
! R oy | ‘ dct(l[ Ol_[Mn My ||| Ar 0 )
i i 51 Re 0 I My, Moy 0 Ac
[ty il I

There are complex
blocks, and they “matter”
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Robustness “test”

e A C C™*™ and associated T’

A = {diag [0] s, s, 65 Tey 05Ty oo 06 g, Ay, AR
op e R,0f € C,A; € C™ixXni}

I' :={diag (V[ L1y, - - -, W1ty s 1(8) Lry sy - - o, v5(8) g, T1(8)s ..., TR(s)]

v €R,vy €S, T, € Smixni}

e Partial knowledge is I' € I" and ||T'[| , < 1

w1

q1

=
A A A

q2

w2

Interconnection is stable at
det (I —T'(so)M(sp)) = det (X (sp)) #0 Vsp € Cy

G

Y

- )
GI\I

z2

Complex mimic dynamics
Maximum-modulus thm
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Robustness “test” and stability margin

w1 Gl

.. > >
Gu !
q1

Theorem: (G, H,I') interconnection is well-posed and ?

stable for all T € T' with [|T||, < 5 if and only if

wo

M e RH2*™ and

g i (M (7)) = max { sup pa (01 ) s () | < 5

1
max,ecre pta (M (jw))

Stability Radius =
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Characterizing as constraint implication

det(I — MA) # 0 if and only if

z = Mw
w =70
w = Az
ua (M) < 1 if and only if
z = Mw
w= Az w =0
A € Ba

Computable conditions
which certify this
implication are “upper
bound” methods
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w=Az, AeBJA as quadratic constraints on (z, w)

Theorem: Given z € C" and w € C". There exists § € C, with |§| < 1 and
w = 0z if and only if zz* — ww* > 0

Theorem: Given z € C" and w € C"™. There exists § € R, with |§| < 1 and
w = 0z if and only if

22" —ww* =0, zw*—wz"=0

Theorem: Given z € C" and w € C™. There exists A € C"™*" with g (A) <1

and w = Az if and only if
¥z —w'w >0
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Bounding 4 Inequalties implying another inequality

Canonical A (general A just has more of each type)

( T )

5L, 00
A =4 0 6., 0 |:01€R,60€C, A3 CM™X™s5
0 0 Ag

\ L . /

Theorem: Given z,w € C". There exists A € Ba such that w = Az and z = Mw
if and only if (M; and F; are appropriate rows of M and Identity)

1. Mhww*M{ — Eyww*EY = 0, Mjyww*E] — FByww*M{ =0,

2. Moww* M5 — Eoww*E5 = 0
When do these imply w = 07

3. w* (MiMs — EXE3)w > 0. ..proving pa (M) < 1.
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S-procedure: implications, containments, empty intersections

ha(:) 20 L <i<N
: = 9() =0
hn(-) >0 m {reR":hi(zx) >0tN{r eR": g(x) <0} =02

1<i<N

If there exist {\; > 0}?; such that

N
g(z) =Y Xhi(z) >0 Vo €R" “S-procedure” on
i=1
then containment /intersection condition holds. E@jy_]’\c/lo[x 5 I(}I EgreqR%adéahj\S} = 0

If there exist {\; > O},fil such that

N
G—> X\NH; =0

: =1 Include list of equalities too
then containment /intersection condition holds. . ,q,
Sufficient condition

CDS20 AUGUST 2014, CALTECH




Classic upper bounds: Doyle; Doyle/Fan/Tits

5L, 0 0

A =4 0 6., O :01 € R, 00 € C,A3z € C™3x™m3
\ 0 0 As
(D, 0o o0

D = 0 D, 0 : Dy =D7 >0,Dy =D > 0,ds >0
\ 0 dslm,
([ G, 0 o0

g = X 0 0 O :Glszi<
\ 0 0

If 3>0,and G € G, D € D satisfy
M*DM — B°D + j(GM — M*G) =<0,

then ua (M) < .
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Classic upper bounds: Doyle; Young/Newlin/Doyle

)
A = 9
D = <
)
Go = <
\

6L, 0 0

0 5217“2 0 : 51 = R, 52 - C’A3 € QmsxXms
0 0 A
D,y 0 0
0 D2 0 :DlzDT>—OaD2:D;>'O,d3>O
diag[g1,..-, 9] 0 0
0 0 3gk€R
0 0

If 3 >0, and G € G,, D € D satisfy

B

then ua (M) < .

& {(I+G2)_% (lDMD—1 —jG) (I+G2)—%] <1,
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Frequency-Grid: adaptive peak estimation

Theorem: (G, H,T') interconnection is well-posed and | ., G ‘
stable for all T' € T' with [|T||, < 5 if and only if T R
M e RHZ*™ and - - y
B H —————————
M(y <
max pa (M(jw)) < B
I, .

pa (M (jw)) < g if B > 0, and G € G,, D € D satisfy b Ty ]

& [(I+ G?)~ % (%DM(ch)D‘l —jG) (I+G2)—%] <1.

Use Hamiltonian techniques to find interval,

l > wr <w < WR

for which this D, G certify pa (M (jw)) < S for all w € |wy,, wRg]
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Upper and Lower Bounds

pa (M) <U

L < pa (M)

No roots in this box

01

root in this box
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Lower Bounds: trying to find small roots of dez(/—MA)

Optimality conditions at minimum-norm root:

if 5= pua (M), then there exist z,w, a,b € Ghe
solvigge R

Mb = Ba

_ __ wyan _ lwsl|
1= qW1, 22 = Tura,[W2) 23 = lag) 43
M*z = Bw

_ __ apws _ llas]]
b1 =qay, by = |a;w2|a27 by = Jws || W3

for ¢ € [—1, 1] with

Re(ajwy) >0 if ¢g=1
Re(ajwi) <0 if ¢g=—1
Re(ajwy) =0 if |g| <1

101 €R, 00 € C, A3 € C"LsXMs}

Conversely, if (3, z,w, a, b, q) solve
these equations, then 8 < pa (M)

Devise iteration, where fixed-point is a
solution. Connections to common
existing iterative algorithms in special
cases. All equilibrium points give
lower bound for pta (M), and produce
offending A € A
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Important regularizations

Replace real-parameters or = Bér+ (1 —B)oec, 1=p<1
C

A
4

v

L P
I 1 1 = - !

—1 0 1 R —1 0 1

e guarantees continuity of ua : C"*" — R
e improves lower-bound convergence

e casily interpreted approximation of uncertain gain-like properties with
slight dynamic characteristics

Replace time-invariant dynamics with arbitrarily-slowly time-varying dynamics

A €RHy, |[|All <1 — A LTV [2A = Azllyp <€ [[Allp5 <1

e DM D~ upper bound for p is exact answer

e casily interpreted approximation of time-invariant uncertainty with arbitrarily-
slowly, time-varying uncertainty
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Moving beyond LTI uncertainty

Definition: Suppose V¥ is a stable linear system and M is a symmetric matrix. A
bounded operator N satisfies the hard IQC defined by (¥, M) if

Megretski and Rantzer, 1997,
IEEE TAC, “System analysis via
Integral Quadratic Constraints”

—~ N |« 2 z € L5[0 00)
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Three systems

System under considera-

f e f e . .
G G tion, augmented with known
W, which captures “cor-
w z d w 2 4 relations” in input/output
A A |
of A
System under consideration, with “unknown” A
. > Yy
... to reach conclusions here J Y
Analyze this... (system model and signal constraint)
f e System under consideration, with “un-
¢ known” A removed, but known aug-
mented correllator ¥ (implicitly) pro-
wo 7 d viding information about signals

Y Y

T
v -~  and /yff(t)Myw(t)dtZO
0
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What are the known constraints?

T
/ Yo () Myy(t)dt >0 VT
0

: v LY

Inequality constraint Equality constraints

o fOT Yo, (£) Myy (t)dt > 0 e Summing junctions, eg., e = f 4+ w
e extra information about z and w e ODE models of G and ¥

Under what conditions do these constraints actually imply a constraint between
(f,d) and (e, z)? Specifically,

/0 eT(D)e(t) + 2T (1) 2(t)dt < +2 /0 ST ) + dT (1)d(t)dt

Easy approach: Use Lyapunov-like construction and S-procedure...
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Analyzing the constraints

A B T
v
e]

T
/ Yo () Myy(t)dt >0 VT
0

Y

Yo

Y

Lyapunov 4+ S-procedure: If there exists a positive, semidefinite function
V(z,n) and A > 0 such that

V(w,n) + My Myy <A*(f7f +d7d) — (eTe+27%2)
(V = V.,V - (Ax + Be) + V,,V - (An + B1z + B2w)>

for all values of z, 7, d, f,w, e, z and y,, constrained only by the interconnection,
then the desired relation holds. Why? Integrate, from z(0) = 0,7(0) = 0, and
use known integral quadratic constraint on y,.
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Analysis Inequality is an SDP

f T A B €T 77 A Bl Bg n /T T
G G: = v = _ _ t)M t)ydt >0 VT
T l SR | B I P I ] [ oo
w
w z d
v - | .
Vi(,n) + My Myy < (f1 f+dTd) = (ele+272) ?
i v Inequality in 5 variables (z, 7, f,w, d) d
w

T
(e.g.) Restrict attention to quadratic V (z,n) := [éﬂ P [ﬂ for some P = PT = 0.

Inequality becomes: st [ Linear in P, \, 72 ] s<0 Vse R tatnstnatne

IQC Analysis: Does there exist P = PT =0, A > 0, 75 > 0 with

M(P7/\778) = 07

which is yet another (important) example of a semidefinite program.
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Connections: Frequency and Time domain

Megretski and Rantzer make weaker assumptions about constraints the operator satisfies

— nonnegativity must hold only on
(but a slightly stronger well-posedness assumption).

Contrast to the Lyapunov argument, where forall isused
explicitly

Moreover, the MR analysis condition (expressed in frequency-domain) is easier to satisfy

— Equivalent to dropping the semi-definiteness requirement on

Recent work (Seiler, to appear, TAC) shows the distinction can be less significant "
appears. Under mild technical assumptions, a PSD quadratic Lyapunov-based cegis

always exists whenever the MR frequency-domain condition holds.

L3)GUZT 2074, CALTECH




Higher-order S-procedure

ﬂ {x e R" : hiy(x) >0} C{xreR":g(x) >0}
= ﬂ {xreR":hi(zx) >0tN{reR": g(x) <0} =02

If there exist {)\ > O}z 1> and {7;; > 0}, ; such that

—Z)whl Z 7_7,_7 >O Ve e R™
=1

1,7=1

then containment /intersection condition holds.

A higher-order “S-procedure” on

and so on ...

— quadratic  , lead to quartic expression
* need to check nonnegativity...
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Sum-of-squares (SOS) to verify nonnegativity
|s the polynomial

p(x) = 227 + 222y — aixs + 5y

non-negative, everywhere?

Yes — as it can be rearranged to
1

1
p(z) = 5(2:13% — 325+ z179)* + §($% +3z1722)* € SOS,

Determining if rearrangement into a sum-of-squares is possible is

theoretically easy for any polynomial
— Eigenvectors/eigenvalues for quadratics
— Practical and reliable for general quartics in 10s of variables
— Semidefinite program (SDP) Parrilo, CDS, 2000+
— Simplifications for polynomials with sparse representation in monomial basis
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SOS optimization: linear objective, SOS constraints

Data: collection of polynomials

{ka}k:O,...,M;jzl,...,d

min
zERM

CTZ

f0,1($) + Zlfl,l(x) +
fO,.2($) + Zlf;,2($) +

fO,.d(iU) + Zlfl,d(x) +

-4 2y fara (x) € SOS,
e —+ ZM]fMQ(iL') c SOS,

So e - szM,d(x) - SOSx

Solved with semidefinite programming
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Implementing a higher-order S-procedure

ﬂ {x e R" : hiy(x) >0} C{xreR":g(x) >0}
= ﬂ {xreR":hi(zx) >0tN{reR": g(x) <0} =02

1<i<N

If there exist {)\ e SOS, }Z ., and {Tw > 0}, ; such that

i=1

1,7=1

then containment /intersection condition holds.

Use SOS-optimization
— choose basis tonlbinearly parametrize the

z) =) vikdr(@)
k=1

{7iks Tiz }
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SOS to verify Input/Output properties

Lo gain T = f(z,u)
VV - flz,u) < y?u'u— h(z)'h(z) on R"™ x R™

vl y=h(z) Y

Dissipative with respect to supply-rate s(-,-)
VV - f(x,u) < s(u,h(z)) on R™ x R"™

Restrict to polynomial

use SOS
Satisfies 1QC defined by W := |-24-2-| and M = M7

Decision variables:

VoV fa,u) + VoV (An+ B[] < nonlinear

u

(Cn+D [h@)DTQ (Cn+D [h&“’m)})T on R" x R™ x R™
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Input/Output properties (local)

(e.g.) Locally-dissipative with respect to supply-rate s(-,-)
VV - f(x,u) < s(u,h(x)) on {z:V(x)<R}xU

SOS analysis (for example), maximizing a parameter p in s = sg + psy
s(u,h(x)) — VV - f(z,u) — M(z,u)(R—V(z)) — Aa(x,u)gu(u) € SOS, 4
Difficulty: decision variables A\; and V enter bilinearly. Approach: Iterate

e Hold V fixed, optimize p over A, Ao
e Hold p, A1, o fixed, recenter (analytic center) V
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Region-of-attraction

Dynamics, equilibrium point
a(t) = f(z(t), f(@)=0

p: Analyst-defined function whose
(well-understood) sub-level sets are
to be in region-of-attraction

{z :p(z) < B} C ROA;
By choice of positive-definite V,
maximize B so that:
{z:p(x) < B} C{z: V() <1}
{z :V(x) <1} is bounded
{r#£z2:V(zx)<1} C{z:VV - f(z) <0}

= Certify containments with S-
procedure

= Use SOS to decide

® Decision variables:

\ N

= Bilinear: use iteration

— Optimize in some steps
— Center in others
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F-18 Falling-Leaf mode

The US Navy has lost many F/A-18 A/B/C/D
Hornet aircraft due to an out-of-control flight
departure phenomenon described as the “falling

Can require 15,000-20,000 ft to recover

Administrative action by NAVAIR to prevent
further losses

RV Revised control law implemented, deployed in
2 i i i i i 2003/4, F/A-18E/F
— uses ailerons to damp sideslip

Heller, David and Holmberg, “Falling Leaf Motion Suppression in the F/A-18 Hornet with Revised Flight Control Software,"
AIAA-2004-542, 42nd AIAA Aerospace Sciences Meeting, Jan 2004, Reno, NV.
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Simplified FCS

1 Longitudinal : 1 Longitudinal :
' : | ' 8 M\ 1 q
' Wstab - 1 Wstab ~
- S e [ - e L
[ - 1 1 ‘
P oo —" o oo
l I----------------
1

T R F/A‘18P|ant FEEEEEESEEEEE---) F/A_18P|ant

- . 1 ..
: D|rect|0nal: :_’ 05 Dlrectlonali
1 I (1,/ | ‘ 1 — .(]l/
: - 1 ll,»”(‘ = ! o Upyd N :
' @ . Actuator =81 ()., ] . /(QJ ] | Actuator —| (), 7
1 1 1 ' 1
1 s+ ' s+6 '
. > 1.\1V1 : 1 : > 1*1 :
:..--------------I I---------------- l)
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Linearized analysis cannot discriminate here

Linearized Analysis: at equilibrium and several steady turn rates

— Classical loop-at-a-time margins

— Disk margin analysis (Nichols)

— Multivariable input disk-margin

— Diagonal input multiplicative uncertainty
— “Full”-block input multiplicative uncertainty

— p-analysis using physically motivated uncertainty in 8 aero coefficients
Conclusion: Both designs have excellent (and nearly identical) linearized

robustness margins trimmed across envelope...
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ROA analysis

Perform reaion-of-attraction estimate as described

B = 0.20127a*3 — 0.0015591a°p — 0.00217180°r + 0.00197430° 2. + 0.32034a3q + 0.0659623° r) for direct
+ 0.1796803 + 0.98314ap — 0.0234260r — 0.02492602, + 0.1343q + 0.00258220 — 0.00685533
+ 0.45003p + 0.1288¢ — 0.99443r + 0.00569222x,
p = 17.7160a°3 — 0.0277a’p — 0.0386a°r + 0.0351a% 2. — 0.00335% + 2 183508 + 3.0420an
M —0.4139ar — 04 3 =0.1831a3 — 0.0496a°p — 0.00050%¢ + 0.0017a’r + 0.0030a° 2. + 0.3203a8q + 0.06433°
+0.27232, + 0.0027a + 0.955Tap — 0.0054a¢ + 0.0187ar — 0.0250az, + 0.13403q + 0.0026a — 0.009173
= —1.45000°8 + 0 + 0.4457p + 0.12766 — 0.9850r + 0.00562,
+ 0.1410ar + 0.1 p = 1.15300°3 + 6.6577a’p — 0.00820% ¢ + 0.0308a%r — 0.1205a° 2, + 18.36893% — 0.5080a3
b=p + 2.4908ap + 0.8743a¢ — 7.2037ar — 0.3495ax, — 0.8151qr — 0.0109a — 4.60003
a = —afr + 0.2467a — 3.5186p — 0.4703¢ — 0.1096q + 3.9316r + 0.2527 2,
q = 0519602 + 4.861 P = —1.42750°8 + 0.05460%p + 0.0031a%$ — 0.0117a%r — 0.01320° 2. + 0.00793% — 1.0008a3
To=40r — 2, — 0.0096ap — 0.0029a¢ + 0.1638ar + 0.1832ax,. — 0.7544pq — 0.0182a + 0.18543 + 0.0895p
- + 0.0124¢ — 0.3500r — 0.15302..
q ¢=p
e & = —afr + 0.24670” — 0.1344a8 + 0.1473aq — Bp — 0.4538r — 0.2487a — 0.06093 + 0.7139q
q = 0.51960" + 4.8613aq + 0.97126pr — 1.9162a — 6.8140q + 0.1305p
— polynomial|  # =4.0r— 2.
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ROA analysis does discriminate

Ellipsoidal shape factor, aligned w/ states, appropriated scaled
— O(1) hours for quartic Lyapunov function certificate
— 0O(100) hours for divergent sims with “small” initial conditions

40 T Jem
: -, Quartic Lyapunov
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Analysis of large-scale interconnection

Preliminary observations:

« Can analyze gain, and more generally, dissipation properties of nonlinear systems with SOS (sum-of-
squares) tools, searching for polynomial storage (Lyapunov) function. pz
71
* Small-scale SOS is possible (
» Large-scale SOS analysis appears difficult (dimension/scalability) U N Y
Proposed approach V
1. Decompose large-scale nonlinear system to interconnection of small systems €Ce—— = |&+—d

2. Analyze each system’s /O properties, in light of interconnection
3. Combine properties/interconnection to make conclusion

Experience thus far

 |If decomposition is already available, combining steps #2/#3 is not trivial, but...

+ ADMM (Alternating Direction Method of Multipliers) is an optimization approach where #2 and #3 naturally fit

* |teration is: a negotiation between a centralized analyst who is only aware of subsystem input/output properties;
and individual agents who are aware of each subsystem’s internal state model in order to confirm various input/
output properties.

Result
» Framework for the certification of stability and input-output performance of interconnected dynamical systems
» Application to intended use-case has been challenging (eg., obtaining a tractable decompaosition of F18 model)

AUCYST 2014, CALTECH




Distributed Analysis of interconnection

Search over arbitrary dissipativity
properties satisfied by the subsystems,

In such a way that verification of
the desired dissipativity property for the

interconnected system . _emerges. |

dissipativity of i’th
subsystem

dissipativity of
interconnection

u

GN

M

A A

Y
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Feasibility of system analysis as optimization

| Subsystem supply rates in each
| analysis must match

Indicator function for dissipativity of
interconnected subsystems, using
dissipativity of subsystems

Indicator functions for dissipativity
of individual subsystems
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Alternating direction method of multipliers

A

General ADMM . < M d

— Decoupled problems for subsystems: decision variables (V{7,047 )
» Each system {7 independently establishes its dissipativity to a supply-rate ¢J/ that

is as close as possible to a target supply-rate, ¢ {7 (with a bias from the Pl-action)
— Coupled problem for interconnection: decision variables (¢ {1,02,...Q0 N )

= Global input/output calculation to prove a system property on (&,€), via supply-rates
(041,012,..,Q0 I/V)that are as close as possible to individually certified for each
subsystem, (QJ1,042 ,---,¢4/V ), again with a bias from the Pl-action

— PI control-action to force convergence of all ¢4/ —@ L7 -0 step-by-step interpretation
CDS20 AUGUST 2014, CALTECH




Nonlinear example

100 subsystems Dense interconnection matrix M/
= 1-input, 1-output, 2 states

= Nonlinear, rational dynamics

» =4 subsystem storage fcns in 1
decoupled problems

Bounded £J2 gain, by camstruction:
212

0.8
(‘ 1 0.6 |
- .
0.4
‘N ‘
T
u Uy 0.2
0
< 0 10 20 30 40 50+
\ [ [terations to convergence
“
€ < (] Cumulative plot displaying the fraction of 200 total tests

that required at most a given number of iterations to
certify the Lo-gain property of the interconnected sys-
tem. The fastest trials succeeded in 3 iterations and 90%
succeeded in fewer than 15 iterations.
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Nonlinear system construction

Each subsystem, /¢, is of the | |
forrh: Construction of the interconnected system:
1. For the Z-th subsystem choose { az’,blz’,
| C'-./-!'} uniformly from
(1,2))( (O,l))( (0.5, 2). Denote
vi=maxiail-1 .
This has 2/2 2. Choose SEAT(N+ )X (N+d) froma
&, H,\ U, normal distribution.
] BnHnTn | 3. Comput'e L=inff(EMFT-1) wh'ere
“ J F=diag (D1, ..., DIV, [ld ), bli
) [‘1’0‘1 Z] s [4’(;1 ;)d] - ) >0, Redeiire Vi = 0.99./}",/)75. |
—4—Chooserandom-nonzero-diagonal-sealings——




Comparing with direct additively-separable storage function

Decoupled analysis implicitly uses an

additively-separable storage fcn
V(x) = V1(£C1) + -+ VN(ajN)

Can this be found directly, exploiting
the complexity reduction (Newton
polytope) in the SOS analysis?
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Instead of limited quadratic supply rates for dissipativeness, search over parametrized IQCs
satisfied by the subsystems

Subsystem certification:

If is the realization of a stable linear system and
there exists a positive semidefinite such that
then : satisfies the IQC defined by

Interconnection certification:

| | Interconnection constraint must
hold for all frequencies. Tractable
by sampling finitely many points or
where via the KYP lemma.

CDS20 AUGUST 2014, CALTECH




First-order optimization algorithms as robust control

Yk

min f(x)

reR"™

a

V()

\ 4

Trp+1 = Az + By

up = Cuxy, /-
xX

Assumptions on / (uncertain plant)
« Strongly convex (772)

- Lipschitz gradients (/)
Algorithm (controller)

» Finite-dim, strictly proper, linear sy¢*

* input: gradient at iterate

« output: next iterate

Automated Analysis with IQC/SDP
- characterize / with IQCs
« certify convergence-rate of interconnection

Extensions
« Gradient noise
« Constrained optimization
' ' " AUGUST 2014, CALTECH
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Backups
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Alternating direction method of multipliers

Optimization problem addressed

ADMM algorithm

Usefulness depends on the
structure of (d,g,A,B), and ease of
solving the decoupled problems

For convex f and g, mild conditions

guarantee convergence of ADMM.
AUGUST 2014, CALTECH




Alternating direction method of multipliers

General ADMM

Translation

— Decoupled problems for subsystems, involving (Vlz',sz')’

— Coupled problem for interconnection, involving (¢ {1,0{2,...,.0

— Update to force convergence of Qli—Q Ji -0«

AUGUST 2014, CALTECH
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Qv

1000 Linear example cases

Sparse interconnection matrix 4/
Bounded L, gain, by construction:

950 subsystems
= 2-input, 2-output, 3 states

2 X2 performance (d,e) o 1

s Pronf-nf-rancrent

1 T T — - — —
| —_—— ;“ woe Dykstra’s method
Y Ny s - == Alternating projection | |
71 0.8} | 1071 | . ADMM 3
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Iterations to convergence

Cumulative plot showing the fraction of 1000 total trials
that required at most a given number of iterations to find
a feasible point using ADMM. For example, the fastest
trials found a feasible point in 4 iterations. Also, 90% of
trials succeeded in 16 iterations or fewer.

Iterations

Plot of the largest eigenvalue for five different iterative
methods. Feasibility is achieved when all eigenvalues are
negative (indicated by a terminal circle). ADMM con-
verged in 15 iterations, while the other methods took
longer or failed to converge after 1000 iterations.
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Unknown interconnection equilibrium

Allow uncertainty in subsystem dynamics so

may no longer be on
the equilibrium manifold.

If equilibrium-manifolds of subsystems are not

known eauilibriiim-noint of interconnectinn (even at
\7T lv"ll, U\-1u||l”| TATTT rJ\JlIII- A\ 4 | MV OOT  UVTITTOUUWNTVTT \vvvll CAL

is not known.

u

Y

TN

M

independent dissipativity)

Analyze dissipative properties of subsystem that are relative to,
but independent of the equilibrium point (EID, for equilibrium-

AUGUST 2014, CALTECH




Equilibrium-Independent Dissipativity

System dynamics

Equilibrium assumption: for every

, there exists unique

suchthat—— " T T -

Define associated equilibrium state-

output map

, and

System is EID with respect to supply-

rate if for every ,
thzrz eyisls non-neqgiive stolrace

function_ . with |

Call this the equilibrium state-input map _ d
Under this condition, along all solutions, and for every an

, Wwith




EID example of vehicle platooning

Consider a platoon of & vehicles: -
1

- Each vehicle, X7, measures its distance to other u . v
vehicles and adjusts its throttle according to a '
control law.

— T

« Abidirectional graph with /' nodes and Z links D D
defines the measurement topology. B( )“ ,
. s D
 DITEeRTLXN maps the vehicle velocities, 747, P o |e I !
to the relative velocities across each link, p J£ . p

« We analyze control laws of the form

Y

A

Each vehicle, X Z, is modeled

ag:
where is surjective and
increasing, but otherwise unknown.
* This guarantees the existence of an equilibrium  where is the
point for the interconnected system, but it is
unknown. Therefore, EID is used. nominal velocity of the -th vehicle.
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EID example of vehicle platooning: 20 vehicles

The map from p to @ (), indicated Letting X=diag(ZJl ,.., ZIL ) we

by the red dashed box, can be written can form: lz 0]

as A=digg(M1 . ALL ) where e
H

0 -D] |

Ll

Each AJf is EIP (equilibrium The ADMM algorithm was applied with

independent passive) for any @4 that . sOS programs to certify the EID of the
is surjective arndincreasjng.

subsystems, and

XN A

-D DT » the supply rates for each are
z‘ | — — 7 fixed at
! 0 - f :p E
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Summary, Extensions and Conclusions

Strategy:

Search over arbitrary dissipativity properties satisfied by the subsystems, in such a
tha Aacirad Aic hao A covetarm amaoaraac

thao r t nta PoX PN
VVGy ll |a|. l.IIC UUOIIGU UIDOIPGLIVILy PIU'JGI Ly IUI lIIU IIIlUIbUIIIICblCU O yolTIIT TITITTYyTo.

Extensions to make this relevant to large-scale nonlinear system certification
— Allow M to be a known linear system, not just a gain
— Use parametrized IQCs, not parametrized supply rates
— Certify subsystem dissipativity/IQCs using numerical schemes, not SOS-proofs

Conclusions:

This strategy is suitable for implementation using the ADMM approach.
The algorithm has some opportunities for trivial parallelization
Proof-of-concept on large linear and nonlinear systems

Can employ equilibrium-independent properties

Pragmatic transition plan to include analysis techniques for a wider variety of subsystem
models
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SOS optimization

Given {plk }Nk.=0,1,--,/V, does there exist {alk }NAi=1,---,/V such
that

Determining if a combination exists is theoretically easy
— SDP

— Practical, reliable for general quadratics in 100s variables; quartics in 10s of variables
— Simplifications for polynomials with sparse monomials

subject to:
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Hierarchy of outer-bounds to non-convex minimization

subject to:

Lower bound to minimum

Better lower bound to minimum

AUGUST 2014, CALTECH



