Computation and Uncertainty The Past, Present and Future of Control

Manfred Morari

with thanks to Paul Goulart, Alex Domahidi and many other collaborators

Automatic Control Laboratory, ETH Zürich

Outline

- Past
 - Where we came from: A pre-history of CDS
- Present
 - Where we are: Fast MPC
- Future
 - Where we should be going: Open research areas

Outline

• Past

- Where we came from: A pre-history of CDS
- Present
 - Where we are: Fast MPC
- Future
 - Where we should be going: Open research areas

Theory-Practice Gap

Main theme of CPC I in 1976

Explosive development of theory had taken place

- Industry did not understand theory
- Academia had no clue about real controller design

Exceptions: Åström, Gilles, Balchen,...

Theory-Practice Gap: Model Uncertainty

- Control Objective did not address robustness / uncertainty directly. Indirect effect of tuning parameters was not understood (Horowitz, Shinnar, Doyle,...)
 - 8 Ind. Eng. Chem. Process Des. Dev., Vol. 18, No. 1, 1979

Design of Sampled Data Controllers

Zalman J. Palmor¹ and Reuel Shinnar*

Department of Chemical Engineering, The City College of The City University of New York, New York, New York 10031

linearized models. A good design procedure must take into account that there is a finite but unknown deviation between the model used for design and the real description of the process. This also applies to probabilistic models of the disturbance.

5. The Controller Must Be Reasonably Insensitive to Changes in System Parameters. It must be stable and perform well over a reasonable range of system parameters.

When we met...

- IFAC Workshop on Robust Control Systems, Interlaken, Switzerland, October 4-7, 1982. org. by J. Ackermann
- Participants: Barmish, Doyle, Frank, Kwakernaak, Looze, Mansour, Morari, Olbrot, Stein, Toedtli,...

Development and Application of Robust Control Techniques in Onemical Engineering

Manfred Morari Chemical Engineering Department University of Wisconsin - Madison

Controllability Assessment of Design Alternatives

Morari, 1981

ICI Ltd Roger Benson NERED, Teesside Bodo Linnhoff Corporate Lab, Runcorn

Controllability Assessment of Design Alternatives Inherent Performance Limitations

Performance Limitations: 1) Time delays 2) RHP transmission zeros 3) Controller gain : 11 G-11 = 5min (G) 4) Robustness: $y(u) = \frac{5max(G)}{5min(G)} = cond. number$ $G = (I + \Delta) \widetilde{G}$, $\|\Delta\| < \delta(\omega)$ IFG AGII Nec. 8 suff Gmax (F) < 1/ x(w) · 1/ suff. only

Robust efficiency and actuator saturation explain healthy heart rate control and variability

Na Li^a, Jerry Cruz^b, Chenghao Simon Chien^{c,d}, Somayeh Sojoudi^e, Benjamin Recht^f, David Stone^g, Marie Csete^h, Daniel Bahmiller^b, and John C. Doyle^{b,c,i,1}

^aSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; ^bDepartment of Computing and Mathematical Science, California Institute of Technology, Pasadena, CA 91125; ^cDepartment of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125; ^dAdvanced Algorithm Research Center, Philips Healthcare, Thousand Oaks, CA 91320; ^eDepartment of Neurology, New York University Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY 10016; ^fDepartment of Electrical Engineering and Computer Sciences and Department of Statistics, University of California, Berkeley, CA 94720; ^gDepartments of Anesthesiology and Neurosurgery and the Center for Wireless Health, University of Virginia School of Medicine, Charlottesville, VA 22908; ^hHuntington Medical Research Institutes, Pasadena, CA 91101; and ⁱDepartment of BioEngineering, California Institute of Technology, Pasadena, CA 91125

NSF Proposal 1985 Robust Controller Design for Systems with Constraints

	MUTICE	OF RESEARCH PROJECT	
	SCIENCE IN	FORMATION EXCHANGE	BIE PROJECT NO
	BALT DELAT	SONIAN INSTITUTION	
NATIONAL SCIENCE FOUNDATION		NSF AWARD ND	
PROJECT SUMMARY			
	FOR	NSF USE DNLY	
-	Thousand on section	PROFORAL NO.	
NI OF INSTITUTION UNCLUDE	E BRANCHICAMPUL AND BON	DD. DE DIVISION	
California In	stitute of Technolog		
ourrornin in	Struct of rechnolog		
			÷
DRESS (INCLUDE DEPARTMEN	ςτ _λ		
Chemical Engin	neering, 206-41		
rasadena, cai	liornia 91125		
INCIPAL INVESTIGATORIS			
Manfred Morar	i, John C. Doyle, Ca	rlos E. Garcia	
TLE OF PROJECT			
Debust Controlls	million from Prostance	with Constantiates	
Robust Controlle	to besign for systems	WICH CONSTRAINTS	
For Nove than a	deende prestitioner	have pointed at model u	neertainty and anorating
constraints as the ke	v difficulties in co	ontrol design for chemica	1 processes. The recently
developed concept of	a Structured Singula	r Value (SSV) holds grea	t promise for accounting
for model uncertainty	in a systematic man	mer in control system de	sign. The main reason for
the popularity of the	model predictive co	ntrol techniques which h	ave appeared in the last
few years, is their ab.	r of practical and t	bearetical issues regard	ing the SSV and model
predictive control wi	th particular emphas	is on the control problem	ms occuring in the chemical
process industries.	Theoretical advances	, software development an	nd applications to
industrial plants are	planned through a 1	industry-University Coope	rative Research agreement
with Shell Developmen	t Co.		

FOUNDATION PROPOSAL EVALUATION FORM	NSF Form 1B Supersedes A	(4-80)		
PROPOSAL NO. INSTITUTION	PLEASE	FOUNDATION	PROPOSAL EVALUATION FORM	NSF Form 1 (4/84) Supersedes All Previous F
CBT-8519896 California Inst of Tech	09/27	PROPOSAL NO.	INSTITUTION	PLEASE RETURN BY
Manfred Morari PROCESS & REACTION ENG	INF	CBT-9519896	California Inst of Tech	09/27/85
TITLE Industry - University Cooperative Research: Robust		Kanfred	Marari PROCESS &	REACTION ENGINE
Controller Design for Systems with Constraints		TITLE Indust	try - University Cooperative Research: R	obust
COMMENTS (CONTINUE ON ADDITIONAL SHEET(S) AS NECESSARY)		Contro	oller Design for Systems with Constraints	
This is the best control proposal I have seen in two decades. The PI know what has been done, but what to do. At the same time, there is creative discovery while confronting realistic difficult problems. T involvement is solid enough to ensure quick reduction of theory to pr	s' not onl much room he industr actice.	Please evaluate this pr sheet(s) as necessary. The subject pr control field. possible level	oposal using the criteria presented on the back of this review for oposal is one of the best I have ever se It should be funded as quickly as poss.	orm. Continue on additional en in the process ible, at the highes
	-	-		4
RECENT RESEARCH ACHIEVEMENTS OF THE PRINCIPAL INVESTIGATOR(S)				
RELEAT RESERVED AGREETEN OF THE PRINCIPAL INVESTIGATION ST.				
constrained, nonlinear systems The <u>hard</u> problems.		Impact of the public to have major	roposed research on advancing the knowled research, combining some of the best ava personnel from a major industrial corpora impact on the process control field.	ge or technology ilable academic ta itmon, is very like
OVERALL D D D D				
RATING: LEXCELLENT VERY GOOD GOOD FAIR POOR Verbatim but anonymous copies of reviews will be sent only to the principal investigator/project director. Subject to this laws, including the Freedom of Information Act, 5 USC 552 and formal requests from Chairpersons of Congressional com	NSF policy and a mittees having re	OVERALL RATING: EXCELLE		DOR
If y nor war, reviewers comments will be aven maximum protection from discussive.				
base: By its ver will most which will				
OVERALL RATING: CECELLENT VERY GOOD		VERALL EXCELLENT	VERY GOOD GOOD FAIR POOR	La come de
OVERALL RATING: EXCELLENT VERY GOOD GOOD FAIR	POOR			
OVERALL RATING: EXCELLENT VERY GOOD GOOD FAIR POOR			CELLENT W VERY GOOD GOOD FAIR P	OOR

NSF Proposal 1985 Robust Controller Design for Systems with Constraints

USE ATTACHED. 9 Pages Impact of the proposed research on advancing the knowledge or technology base: I don't believe it will have any useful impact.	069615921392
Anfred Morari Process and Reaction Engineering TLE Industry - University Cooperative Research: Robust Controller Design for Systems with Constraints lease evaluate this proposal using the criteria presented on the back of this review form. Continue on additional heet(s) as necessary. SEE ATTACHED. 9 Pages Impact of the proposed research on advancing the knowledge or technology base: I don't believe it will have any useful impact.	INCIDAL INCIDEVIDENCE
TLE Industry - University Cooperative Research: Robust Controller Design for Systems with Constraints lease evaluate this proposal using the criteria presented on the back of this review form. Continue on additional meet(s) as necessary. SEE ATTACHED. 9 Pages Impact of the proposed research on advancing the knowledge or technology base: I don't believe it will have any useful impact.	anfred Morari
ease evaluate this proposal using the criteria presented on the back of this review form. Continue on additional leet(s) as necessary. SEE ATTACHED. 9 Pages Impact of the proposed research on advancing the knowledge or technology base: I don't believe it will have any useful impact.	Industry - Un for Systems
	Impact of the pro

NSF Proposal 1985 Excerpts from the "Poor" Review

The proposal has many statements obviously made to impress the reader, but which do not stand up. For example on p. 2, "The

the values at s=0, which is ridiculous. These two claims of practicality are fallacious marketeering, unworthy even of ordinary **business** practice.

p. 11). Probably even here, the calculations are horrendous, or the results very poor. Again and again, they must admit that even their special (highly impractical) cases give conservative (meaning wasteful) results. I cannot at all see the usefulness of any of their work. So much complicated mathematics and so much hard work if numerics are tried, and for what-stability analysis which is conservative and which offers so little insight.

Uncertainty and...

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 12, DECEMBER 1988.

Robust Control of Ill-Conditioned Plants: High-Purity Distillation

SIGURD SKOGESTAD, MANFRED MORARI, MEMBER, IEEE, AND JOHN C. DOYLE

S. Skogestad is with the Department of Chemical Engineering, Norwegian Institute of Technology, Trondheim, Norway.

M. Morari and J. C. Doyle are with the Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125.

Abstract—III-conditioned plants are generally believed to be difficult to control. Using a high-purity distillation column as an example, the physical reason for the poor conditioning and its implications on control system design and performance are explained. It is shown that an acceptable performance/robustness trade-off cannot be obtained by simple loop-shaping techniques (via singular values) and that a good understanding of the model uncertainty is essential for robust control system design. Physically motivated uncertainty descriptions (actuator uncertainty) are translated into the H_{∞} /structured singular value framework, which is demonstrated to be a powerful tool to analyze and understand the complex phenomena.

... Computation

Computational Complexity of μ Calculation

Richard P. Braatz, Peter M. Young, John C. Doyle, and Manfred Morari

Abstract— The structured singular value μ measures the robustness of uncertain systems. Numerous researchers over the last decade have worked on developing efficient methods for computing μ . This paper considers the complexity of calculating μ with general mixed real/complex uncertainty in the framework of combinatorial complexity theory. In particular, it is proved that the μ recognition problem with either pure real or mixed real/complex uncertainty is NP-hard. This strongly suggests that it is futile to pursue exact methods for calculating μ of general systems with pure real or mixed uncertainty for other than small problems.

TEBE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 5, MAY 1994

Skogestad, 1986

Outline

- Past
 - Where we came from: A pre-history of CDS
- Present
 - Where we are: Fast MPC
- Future
 - Where we should be going: Open research areas

Synthesis of Optimal Control Laws

Infinite-Horizon Optimal Control $J^{*}(x) = \min_{u_{i} \in U} \sum_{i=0}^{\infty} l(x_{i}, u_{i})$ s.t. $x_{i+1} = f(x_{i}, u_{i})$ $x_{i} \in X$

Dynamic Programming

• Challenge is computation!

 $J^{\star}(x) = \min_{u} l(x, u) + J^{\star}(f(x, u))$ s.t. $(f(x, u), u) \in X \times U$

Synthesis of Optimal Control Laws

Infinite-Horizon Optimal Control

$$J^*(x) = \min_{u_i \in U} \sum_{i=0}^{\infty} l(x_i, u_i)$$

s.t. $x_{i+1} = f(x_i, u_i)$
 $x_i \in X$

Dynamic Programming

 $J^{\star}(x) = \min_{u} l(x, u) + J^{\star}(f(x, u))$ s.t. $(f(x, u), u) \in X \times U$

- Challenge is computation!
- Closed-form solution for linear systems, no constraints only: LQR,...

Synthesis of Optimal Control Laws

Explicit calculation of control law $u^*(x)$ offline

Online optimization problem defines control action $u_0^{\star}(x)$

Model Predictive Control : Properties

Theory is well-established Mayne, Rawlings, Rao, Scokaert (2000), *Automatica* "MPC: Stability & Optimality (Survey Paper). "

- **Recursive feasibility**: Input and state constraints are satisfied
- **Stability** of the closed-loop system $-J^*(x)$ is a convex Lyapunov function
- MPC = Nonlinear control synthesis with stability guarantees by design !!!
- Assuming the real-time optimization problem is solved to ε-optimality

Offline	Online
Explicit MPC	1 st Order–Fast Gradient
Approx. Explicit MPC	Interior Point Opt.

Offline	Online
Explicit MPC	1 st Order–Fast Gradient
Approx. Explicit MPC	Interior Point Opt.

Explicit MPC : Online => Offline Processing

- Optimization problem is parameterized by state
- Control law piecewise affine for linear systems/constraints
- Pre-compute control law as function of state *x* (parametric optimization)

Result : Online computation dramatically reduced

$$u^{\star}(x_0) = \underset{u_i}{\operatorname{argmin}} \sum_{i=0}^{N} l(x_i, u_i) + V_f(x_N)$$

s.t. $(x_i, u_i) \in X \times U$
 $x_{i+1} = f(x_i, u_i)$
 $x_N \in X_f$

[M.M. Seron, J.A. De Doná and G.C. Goodwin, 2000] [T.A. Johansen, I. Peterson and O. Slupphaug, 2000] [A. Bemporad, M. Morari, V. Dua and E.N. Pistokopoulos, 2000]

Offline	Online
Explicit MPC	1 st Order Methods
 < 5 states Simple look-up < μs sampling 	
Approx. Explicit MPC	Interior Point

Offline	Online
Explicit MPC	1 st Order Methods
 < 5 states Simple look-up < μs sampling 	
Approx. Explicit MPC	Interior Point
 < 10 states Specified complexity < µs sampling 	

Offline	Online
Explicit MPC	1 st Order Methods
 < 5 states Simple look-up < μs sampling 	 Any size Simple and robust μs – ms sampling
Approx. Explicit MPC	Interior Point
 < 10 states Specified complexity < µs sampling 	 Any size Highly accurate ms sampling

Computation / Software

Multi-Parametric Toolbox (MPT)

- (Non)-Convex Polytopic Manipulation
- Multi-Parametric Programming
- Control of PWA and LTI systems
- > 32,000 downloads to date

MPT 3.0 new in 2011

First Order Methods FiOrdOs Code Generator

- Matlab toolbox for automated C-code generation for first order methods
- Considered class of multi-parametric programs:

$$\begin{array}{ll} \min & \frac{1}{2}x^T H x + g^T x + c & H \succeq 0, H \neq 0 \\ \text{s.t.} & x \in \mathbb{X} = \mathbb{X}_1 \times \ldots \times \mathbb{X}_N & \mathbb{X}_i \text{: elementary simple set, e.g.} \\ & Ax = b & \text{box, ball, simplex, LP-, SOCP-cone, ...} \end{array}$$

Example: Code generation for *x*-axis MPC controller

Interior Point Method FORCES Code Generator

Some Early Users of FORCES

Nonlinear MPC & MHE with ACADO Milan Vukov, KU Leuven, 2012

MPC for Wind Turbines Marc Guadayol, ALSTOM, 2012

Quadrotor Control Marc Müller, IDSC, ETH Zurich, 2012

Adaptive MPC for Belt Drives *Kim Listmann, ABB Ladenburg, 2012*

Applications by the Automatic Control Lab

18 ns		Multi-core thermal management (EPFL) [Zanini et al 2010]
10 µs		Voltage source inverters [Mariethoz et al 2008]
20 µs		DC/DC converters (STM) [Mariethoz et al 2008]
25 µs		Direct torque control (ABB) [Papafotiou 2007]
50 µs		AC / DC converters [Richter et al 2010]
5 ms		Electronic throttle control (Ford) [Vasak et al 2006]
20 ms		Traction control (Ford) [Borrelli et al 2001]
40 ms		Micro-scale race cars
50 ms	C.	Autonomous vehicle steering (Ford) [Besselmann et al 2008]
500 ms		Energy efficient building control (Siemens) [Oldewurtel et al 2010]

• Goal: solve sparse second-order cone programs on embedded systems

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & Gx \preceq_{\mathsf{K}} h \end{array} \qquad \begin{array}{ll} \mathsf{K} \triangleq \mathsf{K}_1 \times \mathsf{K}_2 \times \dots \mathsf{K}_N \text{ where } \mathsf{K}_i = \begin{cases} \mathsf{R}_+ \\ \mathsf{Q}^{n_i} \\ \\ \text{and } \mathsf{Q}^{n_i} \triangleq \{(x_0, x_1) \in \mathsf{R} \times \mathsf{R}^{n_i - 1} \mid x_0 \geq \|x_1\|_2 \} \end{cases}$$

• Applications: robust & soft-constrained MPC w/ guarantees, min. fuel descent, optimal power flow, robust beam forming, portfolio selection, machine learning (robust SVMs, group lasso) + all QPs, LPs, QCQPs

Solver implementation (primal-dual IPM):			com/ifa-ethz/ecos	
 ~800 lines of ANSI C, detects infeasibility 		1000 var. problem:		
 Interfaces: MATLAB, Python, Java, .NET, Julia, Scala, 		Mosek	0.04 s	
CVX, CVXPY, Yalmip, Spark/MLlib, Breeze		Gurobi	0.08 s	
– Fastest free SOCP solver		SeDuMi	0.16 s	
- Widely used earby Verizon		SDPT3	0.55 s	
viaciy used, e.g. by venzon	Maintained by		ECOS	0.09 s
ECOS 🕽	embote <mark>ch</mark> *			Spinoff EnHzürich

Brightbox Technologies Inc. MPC for Building Energy Mgt

- Flawless operation in several commercial bldgs.
- Most complex building: 8 packaged units and 600 vav boxes
 - 18,176 signals processed every 5 min.
 - MPC: >300,000 vars. and >500,000 constraints (sampling time 5 mins)

April 2014, © BrightBox Technologies, Inc..

MPC: State of the Art

- MPC (on-line opt) advanced from process control brute force to theoretically founded method of choice in many application areas
- Synthesis of nonlinear controllers with guarantees
- Correct by design, not synthesis based on analysis.
- Computation technology is not limiting the application of (linear/linearized) MPC at any speed for any size problem
- When and where to employ MPC in industry is still a matter of judgment (modeling, maintenance, robustness)

Outline

- Past
 - Where we came from: A pre-history of CDS
- Present
 - Where we are: Fast MPC
- Future
 - Where we should be going: Open research areas

Some Open Research Areas in Control

- Distributed systems with communication constraints
- Systems with discrete decisions and switched systems
- Systems with constraints and uncertainty
- Supervisory control systems

Some Open Research Areas in Control

- Distributed systems with communication constraints
- Systems with discrete decisions and switched systems
- Systems with constraints and uncertainty
- Supervisory control systems

Cooperative Distributed MPC

M dynamically coupled systems, locally constrained

$$x_i^+ = \sum_{j \in \mathcal{N}_i} A_{ij} x_j + B_i u$$
$$(x_i, u_i) \in \mathcal{X}_i \times \mathcal{U}_i$$
e.g. $\mathcal{N}_2 = \{1, 2, 3, 4\}$

e.g. power systems, irrigation systems, traffic networks, etc.

Communication Constraint

- Systems can communicate only if they are dynamically coupled
- No central coordination

Cooperative Distributed MPC

- "Distributed": Each system does local computations
- "Cooperative": Each system communicates with neighbors only to solve global optimization problem iteratively

Distributed Optimization Requires Structure

- Many distr. optimization methods available, see e.g. [Bertsekas et al., 1989]
- Methods allow for global optimization without central coordination
- Methods require structure in the global optimization problem

$$U^{*}(x) \in \arg\min_{U} V_{\mathbf{f}}(x(N)) + \sum_{k=0}^{N-1} l(x(k), u(k))$$
 Structured
s.t. $x(0) = x$,
 $x(k+1) = Ax(k) + Bu(k)$, Structured
 $(x(k), u(k)) \in \mathcal{X} \times \mathcal{U}$, $(x(N) \in \mathcal{X}_{\mathbf{f}})$.

Problem: Stability and feasibility enforcing components, i.e. terminal cost/set, are usually unstructured

 \rightarrow MPC stability theory to be adapted to communication constraints

Feasibility and Stability for General MPC Construction of Terminal Cost and Set

Construction of terminal cost and set

Feasibility and Stability for Distributed MPC Structured Terminal Cost and Set

Suggestion

- Terminal cost: $V_{\rm f}(x) = \sum_{i=1}^{M} V_{{\rm f},i}(x_i)$, each $V_{{\rm f},i}(x_i)$ decreasing locally
- Terminal set: $\mathcal{X}_{f} = \mathcal{X}_{f,1} \times \ldots \times \mathcal{X}_{f,M}$

Without using communication such a structure can often not be designed

Alternative

- Allow $V_{\mathbf{f},i}(x_i)$ to increase as long as $V_{\mathbf{f}}(x)$ decreases: $V_{\mathbf{f},i}(x_i^+) - V_{\mathbf{f},i}(x_i) \leq -l_i(x_{\mathcal{N}_i}, K_{\mathcal{N}_i}x_{\mathcal{N}_i}) + \gamma_i(x_{\mathcal{N}_i})$ $\sum_{i=1}^M \gamma_i(x_{\mathcal{N}_i}) \leq 0$
- Allow time-varying terminal sets:

$$\mathcal{X}_{\mathbf{f},i}(\alpha_i) = \{ x_i \in \mathbb{R}^{n_i} | V_{\mathbf{f},i}(x_i) \le \alpha_i \}, \ \alpha_i^+ = \alpha_i + \gamma_i(x_{\mathcal{N}_i})$$

For linear systems, quadratic cost and polytopic constraints: $V_{f,i}(x_i)$, $\gamma_i(x_{\mathcal{N}_i})$ constructed via distributed LMI, resp. LP [Conte et al., 2012]

Some Open Research Areas in Control

- Distributed systems with communication constraints
- Systems with discrete decisions and switched systems
- Systems with constraints and uncertainty
- Supervisory control systems

PWA Hybrid Models

- Piecewise affine (PWA) systems
- Polyhedral partition of state space
- Affine dynamics on reach region

MLD Hybrid Model

Discrete time linear dynamics and logic can be combined into **Mixed Logical Dynamical (MLD) form**

[Bemporad & Morari, 1999]

$$x(t+1) = Ax(t) + B_1u(t) + B_2\delta(t) + B_3z(t)$$
$$y(t) = Cx(t) + D_1u(t) + D_2\delta(t) + D_3z(t)$$
$$E_2\delta(t) + E_3z(t) \le E_4x(t) + E_1u(t) + E_5$$

$$x, y, u = \begin{bmatrix} \star_c \\ \star_\ell \end{bmatrix}, \star_c \in \mathbb{R}^{n_c}, \star_\ell \in \{0, 1\}^{n_\ell}, \ z \in \mathbb{R}^{r_c}, \ \delta \in \{0, 1\}^{r_\ell}$$

For MLD models all analysis and synthesis problems can be solved via Mixed Integer Linear/Quadratic Programs.

Speedup of software for MILP in 15 years

Linear Program	x 1000
Integer Program	x 100 – 1000
Computers	x 1000
Overall	x 100 million

Preprocessing	x 2
Heuristics	x 1.5

Cutting Planes x 50

Source: Bixby, Gu, Rothberg, Wunderlich 2004

Reminder Constrained Optimal Control of Linear Systems

Parametric
QP
Constrained Optimal Control Problem

$$J(x) = \min_{u} \sum_{k=1}^{N} x_{k}^{T} Q' x_{k} + u_{k}^{T} R' u_{k}$$

 $x_{k+1} = A x_{k} + B u_{k}$
 $x_{k} \in \mathcal{X}, u_{k} \in \mathcal{U}$
 $u(x_{0}) = \arg\min_{u} u^{T} Q u + x_{0}^{T} R u + s^{T} u$
 $F u + G x_{0} \leq h$

 $u(x_0)$ is a cont. polyhedral piecewise affine (PPWA) function of x_0

Idea: Model PPWA system as solution to optimal control problem

[Hempel, Goulart, Lygeros, IEEE-TAC, 2014]

Inverse Optimization System Models

Model PPWA system as solution to optimal control problem Theorem:

Dynamics of any continuous PWA system can be expressed through parametric QP with current (x, u) as a parameter.

$$x^{+} = A_{i}x + B_{i}u + f_{i}$$

(x, u) $\in \Omega_{i}$
$$x^{+} \in T \arg\min_{z} J(z, (x, u))$$

s.t. $(z, (x, u)) \in \Gamma$

- Use Karush-Kuhn-Tucker conditions to represent optimality
- Hybrid dynamics represented by complementarity conditions

Inverse Optimization System Models

Inverse parametric quadratic programming model:

$$x^{+} = Tz^{*}$$

$$z^{*} \in \arg\min_{z} \frac{1}{2}z^{T}Qz + [x^{T} \ u^{T}] Rz + s^{T}z$$
s.t. $Fz + G\begin{bmatrix}x\\u\end{bmatrix} \le h$

Equivalent complementary formulation: (from KKT conditions)

$$x^{+} = Tz^{*}$$
$$Qz^{*} + R^{T} \begin{bmatrix} x \\ u \end{bmatrix} + s + F^{T}\lambda = 0$$
$$0 \le \lambda \perp h - Fz^{*} - G \begin{bmatrix} x \\ u \end{bmatrix} \ge 0$$

Constrained Optimal Control Problem for PPWA Systems

$$\min_{U} x_{N}^{T} P x_{N} + \sum_{k=0}^{N-1} x_{k}^{T} Q x_{k} + u_{k}^{T} R u_{k}$$

s.t. $(x_{k}, u_{k}) \in \mathcal{X}, \quad x_{N} \in \mathcal{T}$

20 example systems:

- 6 states, 3 inputs, 7 regions
- Prediction horizon N = 10
- 30 different initial states x_0
- MLD solved with CPLEX (MIQP solver)
- Inverse optimization solved with IPOPT (NLP solver)

Computation Times for N = 10, 600 instances

Inverse optimization model solved faster than PWA model

Predictive Control

Applications and Strategies

MIP in power electronics applications

• New multilevel topologies emerging for high efficiency and power quality

15 independent pairs of switches operated at frequency > 1kHz, Horizon=50

Control:

- 6 capacitor voltages
- 3 motor currents

- Performance improvement requires accounting for binary nature of manipulated variables
- Need fast MIP solver to optimize performance in real-time

Some Open Research Areas in Control

- Distributed systems with communication constraints
- Systems with discrete decisions and switched systems
- Systems with constraints and uncertainty
- Supervisory control systems

Control of systems with uncertainty and constraints

Uncertain Constrained System

$$x^{+} = (A + A_L \Delta A_R)x + (B + B_L \Delta B_R)u + Ew$$

$$x \in \mathcal{X}, \ u \in \mathcal{U}, \quad \forall (\delta, \Delta) \in \mathcal{W}$$

Controlling systems with *both* constraints *and* uncertainty is very difficult.

Uncertainty Models:

- Parametric / multiplicative uncertainties (Δ terms)
- Additive uncertainties (w terms)

Design Objectives:

- Robust or probabilistic constraint satisfaction
- Robust performance in some sense (H₂, H_{∞} etc)

Solvable by dynamic programming <u>in principle</u>.

Different ways to characterize the multiplicative or additive uncertain terms:

- Bounded uncertainty : uncertainties known only to live in a set
- Known distribution : uncertainty distribution can be perfectly modelled
- Partial moments: limited distributional information (mean and variance)

Limited successes to date:

- Additive + bounds: Disturbance feedback / tube-based methods [Goulart, Kerrigan, Maciejowski 2006; Mayne, Seron, Rakovic 2005]
- Multiplicative + bounds : LMI-based methods [Kothare, Balakrishnan, Morari, 1996; Cannon, Kouvaritakis 2005]
- Multiplicative + known distribution : Scenario-based linear design methods [*Calfiore, Campi 2006; Calfiore, Fagiano 2013*]
- Additive + partial moments : Distributionally robust linear design methods [Van Parys, Kuhn, Goulart, Morari 2014]

Problems with chance constraints

A typical chance constraint condition:

$$\mathbb{P}\left\{\boldsymbol{x}_t \in \mathbb{X}\right\} \ge 1 - \epsilon$$

• No control over severity of constraint violation in outliers.

Most optimization-based approaches are based on sampling of uncertainty for finite horizon problems + MPC.

Conditional Violation at Risk constraints

CVaR is the center of mass of the ϵ -tail:

X is the zero sub-level set of the function *L*:

$$x\in \mathbb{X}\iff L(x)\leq 0$$

• The function *L* quantifies constraint violation severity.

CVaR bounds imply chance constraint satisfaction:

$$\mathbb{P}-\operatorname{CVaR}_{\epsilon}\left(L(\boldsymbol{x})\right) \leq 0 \implies \mathbb{P}\left\{\boldsymbol{x} \in \mathbb{X}\right\} \geq 1-\epsilon$$

Distributionally Robust Control

CVaR Constrained Design Problem

$$\begin{split} \inf_{\substack{\pi \in \Pi_{\infty} \\ t \to \infty}} & \lim_{t \to \infty} & \mathbb{E}_{\mathbb{P}} \left\{ x_t^{\top} Q x_t + u_t^{\top} R u_t \right\} \\ \text{s.t.} & x_{t+1} = A x_t + B u_t + E w_t, \\ & \lim_{t \to \infty} & \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{P}\text{-}\mathsf{CVaR}_{\epsilon} \left(L \left(x_t \right) \right) \leq 0 \end{split}$$

Problem features:

- Optimal solution is a linear state feedback controller.
- The set P is the *distributional ambiguity set*.
- Robust CVaR constraint bounds the worst-case *severity of outliers*.
- Optimal solution can be computed by solving an SDP.
- Similar results for output feedback case.

[Van Parys, Kuhn, Goulart, Morari 2014]

Open questions for uncertain constrained systems

- Output feedback is mostly not well understood.
- Receding horizon methods for chance-constrained problems are mostly sampling based, with few infinite horizon results.
- Few clear connections to classical linear design methods.
- Many competing uncertainty models and numerical approaches, most of which are mutually incompatible.
- Most methods are sub-optimal : how can we measure their performance relative to the best possible controller?

Some Open Research Areas in Control

- Distributed systems with communication constraints
- Systems with discrete decisions and switched systems
- Systems with constraints and uncertainty
- Supervisory control systems

A typical Piping & Instrumentation Diagram

Supervisory Control Logic

- Goals
 - Optimization: Adapt control targets for economic optimization
 - Constraint Management: obey operational constraints
 - Sequence transitions, e.g. start-up, shut down, reaction to failure,...
- Requirements
 - Robustness
- Problems
 - Analysis
 - Synthesis

Formal Verification of Embedded Software in Model Based Design

- Model checking of safety properties for Simulink Models
- Avionics distributed control system complexity:
 - 10K-250K simulink blocks
 - 40k-150K binary raw variables
 - Hundred to few thousand bin's after *simplification/abstraction*
- Automotive single controller complexity:
 - 5K-80K simulink blocks
 - Few thousand bin's after *simplification/abstraction*
- FormalSpecsVerifier tool environment (NuSMV)

Source: Alberto Ferrari

Advanced Laboratory on Embedded Systems

Conclusions

- Themes of Uncertainty and Computation
- For implementation MPC is alternative of choice, but open issues:
 - Communication constraints
 - Switches (incl supervisory control)
 - Uncertainty
- Match insight from "other methods" to MPC implementation