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Theory-Practice Gap!
!
Main theme of CPC I in 1976!

!
Explosive development of theory !
had taken place!

•  Industry did not understand theory!
•  Academia had no clue about !
     real controller design!
!
Exceptions: Åström, Gilles, Balchen,…!



Theory-Practice Gap: Model Uncertainty!
•  Control Objective did not address robustness / uncertainty 

directly. Indirect effect of tuning parameters was not 
understood (Horowitz, Shinnar, Doyle,…)!



When we met…!
•  IFAC Workshop on Robust Control Systems, Interlaken, 

Switzerland, October 4-7, 1982. org. by J. Ackermann!
•  Participants: Barmish, Doyle, Frank, Kwakernaak, Looze, 

Mansour, Morari, Olbrot, Stein, Toedtli,…!
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The correlation of healthy states with heart rate variability (HRV)
using time series analyses is well documented. Whereas these
studies note the accepted proximal role of autonomic nervous
system balance in HRV patterns, the responsible deeper physiolog-
ical, clinically relevant mechanisms have not been fully explained.
Using mathematical tools from control theory, we combine mech-
anistic models of basic physiology with experimental exercise
data from healthy human subjects to explain causal relationships
among states of stress vs. health, HR control, and HRV, and more
importantly, the physiologic requirements and constraints under-
lying these relationships. Nonlinear dynamics play an important
explanatory role––most fundamentally in the actuator saturations
arising from unavoidable tradeoffs in robust homeostasis and
metabolic efficiency. These results are grounded in domain-specific
mechanisms, tradeoffs, and constraints, but they also illustrate
important, universal properties of complex systems. We show that
the study of complex biological phenomena like HRV requires
a framework which facilitates inclusion of diverse domain specifics
(e.g., due to physiology, evolution, and measurement technology)
in addition to general theories of efficiency, robustness, feedback,
dynamics, and supporting mathematical tools.

system identification | optimal control | respiratory sinus arrhythmia

Biological systems display a variety of well-known rhythms in
physiological signals (1–6), with particular patterns of vari-

ability associated with a healthy state (2–6). Decades of research
demonstrate that heart rate (HR) in healthy humans has high
variability, and loss of this high HR variability (HRV) is corre-
lated with adverse states such as stress, fatigue, physiologic se-
nescence, or disease (6–13). The dominant approach to analysis
of HRV has been to focus on statistics and patterns in HR time
series that have been interpreted as fractal, chaotic, scale-free,
critical, etc. (6–17). The appeal of time series analysis is un-
derstandable as it puts HRV in the context of a broad and
popular approach to complex systems (5, 18), all while requiring
minimal attention to domain-specific (e.g., physiological) details.
However, despite intense research activity in this area, there is
limited consensus regarding causation or mechanism and mini-
mal clinical application of the observed phenomena (10). This
paper takes a completely different approach, aiming for more
fundamental rigor (19–24) and methods that have the potential
for clinical relevance. Here we use and model data from exper-
imental studies of exercising healthy athletes, to add simple
physiological explanations for the largest source of HRV and its
changes during exercise. We also present methods that can be
used to systematically pursue further explanations about HRV
that can generalize to less healthy subjects.
Fig. 1 shows the type of HR data analyzed, collected from

healthy young athletes (n = 5). The data display responses to
changes in muscle work rate on a stationary bicycle during mostly

aerobic exercise. Fig. 1A shows three separate exercise sessions
with identical workload fluctuations about three different means.
With proper sleep, hydration, nutrition, and prevention from
overheating, trained athletes can maintain the highest workload
in Fig. 1 for hours and the lower and middle levels almost in-
definitely. This ability requires robust efficiency: High workloads
are sustained while robustly maintaining metabolic homeostasis,
a particularly challenging goal in the case of the relatively large,
metabolically demanding, and fragile human brain.
Whereas mean HR in Fig. 1A increases monotonically with

workloads, both slow and fast fluctuations (i.e., HRV) in HR are
saturating nonlinear functions of workloads, meaning that both
high- and low-frequency HRV component goes down. Results
from all subjects showed qualitatively similar nonlinearities (SI
Appendix). We will argue that this saturating nonlinearity is the
simplest and most fundamental example of change in HRV in
response to stressors (11, 12, 25) [exercise in the experimental
case, but in general also fatigue, dehydration, trauma, infection,
even fear and anxiety (6–9, 11, 12, 25)].
Physiologists have correlated HRV and autonomic tone (7, 11,

12, 14), and the (im)balance between sympathetic stimulation
and parasympathetic withdrawal (12, 26–28). The alternation in
autonomic control of HR (more sympathetic and less para-
sympathetic tone during exercise) serves as an obvious proximate
cause for how the HRV changes as shown in Fig. 1, but the
ultimate question remains as to why the system is implemented

Significance

Reduction in human heart rate variability (HRV) is recognized
in both clinical and athletic domains as a marker for stress or
disease, but previous mathematical and clinical analyses have
not fully explained the physiological mechanisms of the vari-
ability. Our analysis of HRV using the tools of control mathe-
matics reveals that the occurrence and magnitude of observed
HRV is an inevitable outcome of a controlled system with
known physiological constraints. In addition to a deeper un-
derstanding of physiology, control analysis may lead to the
development of timelier monitors that detect control system
dysfunction, and more informative monitors that can associate
HRV with specific underlying physiological causes.
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Robust Control of Ill-Conditioned Plants: 
High-Purity Distillation 

A~stract-Ill-eonditioned plants are generally believed to be difficult to 
control. Using a high-punty distillation column as an example, the 
physical reason for the poor conditioning and its implications on control 
system design and performance are explained. It is shown that an 
acceptable performancehobustness trade-off cannot be obtained by 
simple loop-shaping techniques (via singular values) and that a good 
understanding of the model uncertainty is essential for robust control 
system design. Physically motivated uncertainty descriptions (actuator 
uncertainty) are translated into the HJstructured singular value frame- 
work, which is demonstrated to be a powerful tool to analyze and 
understand the complex phenomena. 

I. INTRODUCTION 

T is well known that ill-conditioned plants may cause control I problems [ 11-[5]. By ill-conditioned we mean that the plant gain 
is strongly dependent on the input direction, or equivalently that 
the plant has a high condition number 

Here 6(G) and q(G) denote the maximum and minimum singular 
values of the plant 

)I - 112 denotes the usual Euclidean norm. We also say that an ill- 
conditioned plant is characterized by strong directionality because 
inputs in directions corresponding to high plant gains are strongly 
amplified by the plant, while inputs in directions corresponding to 
low plant gains are not. 

The main reason for the control problems associated with ill- 
conditioned plants is uncertainty. Uncertainty in the plant model 
may have several origins. 

1) There are always parameters in the linear model which are 
only known approximately. 

2) Measurement devices have imperfections. This may give rise 
to uncertainty on the manipulated inputs in distillation columns, 
since they are usually measured and adjusted in a cascade manner. 
In other cases, limited valve resolution may cause input uncer- 
tainty. 

3) At high frequencies even the structure and the model order 
are unknown, and the uncertainty will exceed 100 percent at some 
frequency, 

4) The parameters in the linear model may vary due to 
nonlinearities or changes in the operating conditions. 

Manuscript received December 2, 1986; revised May 19, 1988. Paper 
recommended by Associate Editor, D. Seborg. This work was supported by 
the National Science Foundation and by Norsk Hydro. 

S. Skogestad is with the Department of Chemical Engineering, Norwegian 
Institute of Technology, Trondheim, Norway. 

M. Morari and J. C. Doyle are with the Department of Chemical 
Engineering, California Institute of Technology, Pasadena, CA 91 125. 
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For tight control of ill-conditioned plants the controller should 
compensate for the strong directionality by applying large input 
signals in the directions where the plant gain is low; that is, a 
controller similar to G- I in directionality is desirable. However, 
because of uncertainty, the direction of the large input may not 
correspond exactly to the low plant-gain direction, and the 
amplification of these large input signals may be much larger than 
expected from the model. This will result in large values of the 
controlled variables y (Fig. l), leading to poor performance or 
even instability. 

The concept of directionality is clearly unique to multivariable 
systems, and extensions of design methods developed for SISO 
systems are likely to fail for multivariable plants with a high 
degree of directionality. Furthermore, since the problems with ill- 
conditioned plants are closely related to how uncertainty affects 
the particular plant, it is very important to model the uncertainty 
as precisely as possible. Most multivariable design methods 
(LQG, LQG/LTR, DNA/INA, IMC, etc.) do not explicitly take 
uncertainty into account, and these methods will in general not 
yield acceptable designs for ill-conditioned plants. 

A distillation column will be used as an example of an ill- 
conditioned plant. Here the product compositions are very 
sensitive to changes in the external flows (high gain in this 
direction), but quite insensitive to changes in the internal flows 
(low gain in this direction). In this paper the main emphasis is on 
the general properties of ill-conditioned plants, rather than the 
control system design for real distillation columns. We therefore 
choose to use a very simple model of the column where the 
condition number as a function of frequency is constant. The use 
of a more realistic model is discussed by the authors in another 
paper 161. 

The objective of this paper is to demonstrate with a very simple 
simulation example that ill-conditioned plants are potentially 
extremely sensitive to plant uncertainty. Secondly, we show that 
the structured singular value (SSV, usually denoted p )  provides a 
rigorous framework for analyzing and understanding this behav- 
ior. Necessary and sufficient conditions for robust stability and 
robust performance may be formulated in terms of y. The 
frequency domain is used to specify uncertainty and performance. 
These specifications are given in terms of magnitude bounds on 
the H,-norm [supua'( e)] of the uncertainty (A) and the sensitivity 
operator (S = (Z + GC)-'). In this paper the nominal plant 
model (A = 0) is denoted by G, and the perturbed model when 
there is uncertainty is given subscript p (i.e., G,,). We will also 
refer to the Complimentary sensitivity operator H = GC(Z + 
GC)-' = Z - S and to the input sensitivity (SI = (Z + CG)-') 
and input complimentary sensitivity (HI = Z - SI)  operators. 

11. DISTILLATION COLUMN EXAMPLE 

The objective of the distillation column (Fig. 2) is to split the 
feed F, which is a mixture of a light and a heavy component, into 
a distillate product D, which contains most of the light compo- 
nent, and a bottom product B, which contains most of the heavy 
component. The compositions zF, y,, and x, of these streams 
refer to the mole fractions of the light component. Perfect 
separation would be obtained with yo = 1 and xB = 0. The 
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the H,-norm [supua'( e)] of the uncertainty (A) and the sensitivity 
operator (S = (Z + GC)-'). In this paper the nominal plant 
model (A = 0) is denoted by G, and the perturbed model when 
there is uncertainty is given subscript p (i.e., G,,). We will also 
refer to the Complimentary sensitivity operator H = GC(Z + 
GC)-' = Z - S and to the input sensitivity (SI = (Z + CG)-') 
and input complimentary sensitivity (HI = Z - SI)  operators. 

11. DISTILLATION COLUMN EXAMPLE 

The objective of the distillation column (Fig. 2) is to split the 
feed F, which is a mixture of a light and a heavy component, into 
a distillate product D, which contains most of the light compo- 
nent, and a bottom product B, which contains most of the heavy 
component. The compositions zF, y,, and x, of these streams 
refer to the mole fractions of the light component. Perfect 
separation would be obtained with yo = 1 and xB = 0. The 
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Robust Control of Ill-Conditioned Plants: 
High-Purity Distillation 
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condition number as a function of frequency is constant. The use 
of a more realistic model is discussed by the authors in another 
paper 161. 

The objective of this paper is to demonstrate with a very simple 
simulation example that ill-conditioned plants are potentially 
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ior. Necessary and sufficient conditions for robust stability and 
robust performance may be formulated in terms of y. The 
frequency domain is used to specify uncertainty and performance. 
These specifications are given in terms of magnitude bounds on 
the H,-norm [supua'( e)] of the uncertainty (A) and the sensitivity 
operator (S = (Z + GC)-'). In this paper the nominal plant 
model (A = 0) is denoted by G, and the perturbed model when 
there is uncertainty is given subscript p (i.e., G,,). We will also 
refer to the Complimentary sensitivity operator H = GC(Z + 
GC)-' = Z - S and to the input sensitivity (SI = (Z + CG)-') 
and input complimentary sensitivity (HI = Z - SI)  operators. 

11. DISTILLATION COLUMN EXAMPLE 

The objective of the distillation column (Fig. 2) is to split the 
feed F, which is a mixture of a light and a heavy component, into 
a distillate product D, which contains most of the light compo- 
nent, and a bottom product B, which contains most of the heavy 
component. The compositions zF, y,, and x, of these streams 
refer to the mole fractions of the light component. Perfect 
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… Computation!

Computational Complexity of p Calculation 

Richard P. Braatz, Peter M. Young, 
John C. Doyle, and Manfred Morari 

Abstract-The structured singular value p measures the robustness 
of uncertain systems. Numerous researehers over the last decade have 
worked on developing efficient methods for computing p. This paper 
considers the complexity of calculating p with general mixed dcomplex  
uncertainty in the framework of combinatorial complexity theory. In 
particular, it is proved that the p recognition problem with either 
pure real or mixed reaUcomplex uncertainty is NP-hard. This strongly 
suggests that it is fbtile to pursue exact methods for calculating p of 
general systems with pure real or mixed uncertainty for other than smal l  
problems. 

I. INTRODUCTION 
Robust stability and performance analysis with real parametric and 

dynamic uncertainties can be naturally formulated as a structured 
singular value (or p )  problem, where the block structured uncertainty 
description is allowed to contain both real and complex blocks. It 
is assumed that the reader is familiar with this type of robustness 
analysis, as space constraints preclude covering this here. For a 
collection of papers describing the engineering motivation and the 
computational approaches, see [3] and the references contained 
within. 

In this work, we determine the computational complexity of p 
calculation with either pure real or mixed redcomplex uncertainty. 
To apply computational complexity theory, we formulate p calcula- 
tion as a recognition problem (a "yes" or "no" problem). We show 
that this recognition problem is NP-hard, i.e., at least as hard as the 
NP-complete problems. 

The exact consequences of a problem being NP-complete is still a 
fundamental open question in the theory of computational complexity, 
and we refer the reader to Garey and Johnson [5] for an in-depth 
treatment of the subject. However, it is generally accepted that a 
problem being NP-complete means that it cannot be computed in 
polynomial time in the worst case. It is important to note that 
being NP-complete is a property of the problem itself, not of any 
particular algorithm. The fact that the mixed p problem is NP-hard 
strongly suggests that, given any algorithm to compute p, there 
will be problems for which the algorithm cannot find the answer 
in polynomial time. 

The terminology of computational complexity theory is used 
extensively in this note. The definitions for NP-complete, NP-hard, 
recognition problems, and other terms agree with those in the well- 
known textbooks by Garey and Johnson [5] and Papadimitriou and 
Steiglitz [8]. 

The proofs are simple. First, we show that indefinite quadratic 
programming can be cast as a p problem of "roughly" the same size. 
Since the recognition problem for indefinite quadratic programming 
is NP-complete, the p recognition problem must be NP-hard. 

Nomenclature: Matrices are upper case; vectors and scalars are 
lower case. R is the set of real numbers; C is the set of complex 
numbers; 2 is the set of integers; Q is the set of rationals. F ( A )  is 
the maximum singular value of matrix A and I,. is the T x T identity 
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matrix. Define the set A of block diagonal perturbations by 

A E diag { h : I r l , .  . . , S;Ir,, G+iI , . ,+,  , . . . , GIrm, 

. . . , A,,} I Arm+1, 
{ 

I 

Let M E e"'". Then p a ( M )  is defined as 

PA (MI 
0 

[minAEA{F(A)ldet ( I  - M A )  = 0)I-l 

if there does not exist A E A such that 
det (I - M A )  = 0, 

otherwise. 
(2) 

Without loss of generality, we have taken M and each subblock of 
A to be square. 

11. COMPUTATIONAL COMPLEXITY OF p CALCULATION 

We first show that indefinite quadratic programming,is a special 
case of a p problem. Let z, p ,  bi, b ,  E R", A E Rnxn, and c E R. 
Define the quadratic programming problem 

(3) 

where A can be indefinite. In the following theorem, we cast the 
aforementioned problem as a p problem. 

Theorem 2.1 (Quadratic Programming Polynomially Reduces to a 
p Problem): Define 

0 0 kw 
M =  LA 0 L A 3  1, (4) 

(5 )  

[i'.ltpF wT -T z A z + p T Z + c  - 

A = {diag[b~,-- . ,SL, SY,.--,SL, Sc]16' E R; 6" E C}, 

This implies that the indefinite quadratic program (3) polynomially 
reduces to both a real p problem, and a mixed p problem. 

Proof: The proof is trivial for IC = 0, so assume k > 0. The idea 
is to treat the constraints as uncertainty and the objective function as 
the performance objective of a robust performance problem (see [4] 
for a description of the robust performance problem). The constraint 
set is 

{ z l b l  5 I 5 b , }  = { Z ~ I  = f +  Arw; 
A r  = diag[6;,...,6;]; 6,' E [-1, 11). (10) 

For convenience, define an artificial output y E R and an artificial 
input d E R. Then the quadratic programming problem can be 
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Skogestad, 1986!



Outline!

•  Past!
–  Where we came from: A pre-history of CDS!

•  Present!
–  Where we are: Fast MPC!

•  Future!
–  Where we should be going: Open research areas!



Dynamic Programming 

Synthesis of Optimal Control Laws!
Infinite-Horizon Optimal Control 

J�(x) = min
ui⇤U

⇥�

i=0

l(xi, ui)

s.t. xi+1 = f(xi, ui)

xi � X

• Challenge is computation!!

J�(x) = min
u

l(x, u) + J�(f(x, u))

s.t. (f(x, u), u) ⇥ X � U



Dynamic Programming 

Synthesis of Optimal Control Laws!
Infinite-Horizon Optimal Control 

J�(x) = min
ui⇤U

⇥�

i=0

l(xi, ui)

s.t. xi+1 = f(xi, ui)

xi � X

• Challenge is computation!!
• Closed-form solution for 

linear systems, no 
constraints only: "
LQR,…!

J�(x) = min
u

l(x, u) + J�(f(x, u))

s.t. (f(x, u), u) ⇥ X � U



Dynamic Programming Model Predictive Control 

Synthesis of Optimal Control Laws!
Infinite-Horizon Optimal Control 

J�(x) = min
ui⇤U

⇥�

i=0

l(xi, ui)

s.t. xi+1 = f(xi, ui)

xi � X

Explicit calculation of control 
law !offline!

Online optimization problem 
defines control action 

J�(x) = min
u

l(x, u) + J�(f(x, u))

s.t. (f(x, u), u) ⇥ X � U

u�(x) u�
0(x)

J

⇤(x0) = min
ui

NX

i=0

l(xi, ui) + Vf (xN )

s.t. (xi, ui) 2 X ⇥ U, xN 2 Xf

xi+1 = f(xi, ui)



Model Predictive Control : Properties!
Theory is well-established!
Mayne, Rawlings, Rao, Scokaert (2000), Automatica !
“MPC: Stability & Optimality (Survey Paper). “!
!
•  Recursive feasibility: Input and state constraints are satisfied!
•  Stability of the closed-loop system!

–              is a convex Lyapunov function!

•  MPC = Nonlinear control synthesis with stability         
guarantees by design !!!!
!

•  Assuming the real-time optimization problem is solved to    
ε-optimality!

J�(x)



Verifiable Control Synthesis!

Offline Online 

Explicit MPC 1st Order–Fast Gradient 

Approx. Explicit MPC Interior Point Opt. 



Verifiable Control Synthesis!

Offline Online 

Explicit MPC 1st Order–Fast Gradient 

Approx. Explicit MPC Interior Point Opt. 



Explicit MPC : Online => Offline Processing!
•  Optimization problem is parameterized by state!
•  Control law piecewise affine for linear systems/constraints!
•  Pre-compute control law as function of state  "

(parametric optimization)!
Result : Online computation "

!dramatically reduced!
u�(x)

x1 x2
[M.M. Seron, J.A. De Doná and G.C. Goodwin, 2000] 
[T.A. Johansen, I. Peterson and O. Slupphaug, 2000] 
[A. Bemporad, M. Morari, V. Dua and E.N. Pistokopoulos, 2000] 

x

u�(x0) = argmin
ui

N�

i=0

l(xi, ui) + Vf (xN )

s.t. (xi, ui) ⇥ X � U

xi+1 = f(xi, ui)

xN ⇥ Xf



Verifiable Control Synthesis!

 

•  < 5 states 
•  Simple look-up 
•  < µs sampling 

Offline Online 

Explicit MPC 1st Order Methods 

Approx. Explicit MPC Interior Point 



Verifiable Control Synthesis!

 

•  < 5 states 
•  Simple look-up 
•  < µs sampling 

•  < 10 states 
•  Specified complexity 
•  < µs sampling 

Offline Online 

Explicit MPC 1st Order Methods 

Approx. Explicit MPC Interior Point 



Verifiable Control Synthesis!

 

•  < 5 states 
•  Simple look-up 
•  < µs sampling 

• Any size 
•  Simple and robust 
•  µs – ms sampling 

•  < 10 states 
•  Specified complexity 
•  < µs sampling 

• Any size 
• Highly accurate 
• ms sampling 

Offline Online 

Explicit MPC 1st Order Methods 

Approx. Explicit MPC Interior Point 



Computation / Software!

So!ware synthesis 
•  Real-time workshop 
•  Bounded-time solvers 
•  Verifiable code generation 

Formal specification 
•  YALMIP 
•  HYSDEL 
•  Linear + Hybrid models 

Verified controller 
 

Control law 
•  Explicit MPC 
•  Fixed-complexity solutions 

Multi-Parametric Toolbox (MPT)  
•  (Non)-Convex Polytopic Manipulation  
•  Multi-Parametric Programming 
•  Control of PWA and LTI systems 
•  > 32,000 downloads to date 

MPT 3.0 new in 2011 

!
!
!
!
!
!
!
!



 
First Order Methods 
FiOrdOs Code Generator 

•  Matlab toolbox for automated C-code generation for first order methods  
•  Considered class of multi-parametric programs: 

: elementary simple set, e.g. 
box, ball, simplex, LP-, SOCP-cone, … 

Example: Code generation for x-axis MPC controller 

[Master Thesis by F. Ullmann, 2011] 

Matlab 
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Interior Point Method"
FORCES Code Generator!

Multistage QCQP!

?

Embedded Hardware!

•  C code generation of 
primal-dual Mehrotra 
interior point solvers!

•  LPs, QPs, QCQPs!
•  Parametric problems!
•  Multi-core platforms!
•  Library-free!
•  Available: forces.ethz.ch!

Problem description!
stage = MultiStageProblem(N+1); 
for i = 1:N+1 
% dimensions 
stages(i).dims.n = 10;  
stages(i).dims.r = 5;   
stages(i).dims.lb = 3;  
 
% cost 
stages(i).cost.H = Hi; 
stages(i).cost.f = fi; 
 
% inequalities 
stages(i).ineq.b.lbidx = 3:5; 
stages(i).ineq.b.lb = zeros(3,1); 
 
% equalities 
stages(i).eq.C = Ci; 
stages(i).eq.c = ci; 
stages(i).eq.D = Di; 
end 
generateCode(stages); 

Solver (ANSI-C)!

MATLAB MEX interface"
for rapid prototyping!

solver.h!
solver.c!
solver.m!
solvermex.c!
makemex!

Generated Code!

min
�N

i=1
1
2vT

i Hivi + fT
i vi

s.t. zi � vi � v̄i

Aivi � bi

vT
i Qi,jvi + lTi,jvi � ri,j

Civi + Di+1vi+1 = ci
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Some Early Users of FORCES!

MPC for Wind Turbines!
Marc Guadayol, ALSTOM, 2012!

Adaptive MPC for Belt Drives!
Kim Listmann, ABB Ladenburg, 2012!

Nonlinear MPC & MHE with ACADO!
Milan Vukov, KU Leuven, 2012!

Quadrotor Control!
Marc Müller, IDSC, ETH Zurich, 2012!



Applications by the Automatic Control Lab!

18 ns !Multi-core thermal management (EPFL)"
! ![Zanini et al 2010] !

10 µs !Voltage source inverters !"
! ![Mariethoz et al 2008]!

20 µs !DC/DC converters (STM) ! !!
! ! ![Mariethoz et al 2008]!

25 µs !Direct torque control (ABB) !"
! ![Papafotiou 2007]!

50 µs !AC / DC converters !"
! ![Richter et al 2010]!

5 ms !Electronic throttle control (Ford) !!
! ! ![Vasak et al 2006]!

20 ms !Traction control (Ford) !"
! ![Borrelli et al 2001]!

40 ms !Micro-scale race cars "
! !!

50 ms !Autonomous vehicle steering (Ford)"
! ![Besselmann et al 2008]!

500 ms !Energy efficient building control (Siemens) !"
! ![Oldewurtel et al 2010]!



Embedded Conic Solver!

•  Goal: solve sparse second-order cone programs on embedded systems!

•  Applications: robust & soft-constrained MPC w/ guarantees, min. fuel 
descent, optimal power flow, robust beam forming, portfolio selection, 
machine learning (robust SVMs, group lasso) + all QPs, LPs, QCQPs!

•  Solver implementation (primal-dual IPM):!
–  ~800 lines of ANSI C, detects infeasibility!
–  Interfaces: MATLAB, Python, Java, .NET, Julia, Scala,"

CVX, CVXPY, Yalmip, Spark/MLlib, Breeze!
–  Fastest free SOCP solver!
–  Widely used, e.g. by Verizon!

.com/ifa-ethz/ecos!

[A. Domahidi, E. Chu, S. Boyd, ECC 2013]!

Maintained by!

1000 var. problem:!
Mosek! 0.04 s!
Gurobi! 0.08 s!
SeDuMi! 0.16 s!
SDPT3! 0.55 s!
ECOS! 0.09 s!



Brightbox*Technologies*Inc.*
MPC*for*Building*Energy*Mgt*

!  Flawless*operation*in*several*commercial*bldgs.*

! Most*complex*building:*8*packaged*units*and*600*vav*
boxes*
!  18,176*signals*processed*every*5*min.*

! MPC:*>300,000*vars.*and**>500,000*
constraints*(sampling*time*5*mins)*

April*2014,*©*BrightBox*Technologies,*Inc..*



MPC: State of the Art!
•  MPC (on-line opt) advanced from process control brute force 

to theoretically founded method of choice in many 
application areas!

•  Synthesis of nonlinear controllers with guarantees!
•  Correct by design, not synthesis based on analysis.!
•  Computation technology is not limiting the application of 

(linear/linearized) MPC at any speed for any size problem!

•  When and where to employ MPC in industry is still a matter 
of judgment (modeling, maintenance, robustness)!



Outline!

•  Past!
–  Where we came from: A pre-history of CDS!

•  Present!
–  Where we are: Fast MPC!

•  Future!
–  Where we should be going: Open research areas!



Some Open Research Areas in Control!
•  Distributed systems with communication constraints!

•  Systems with discrete decisions and switched systems!

•  Systems with constraints and uncertainty!

•  Supervisory control systems!



Some Open Research Areas in Control!
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•  Systems with constraints and uncertainty!
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Cooperative Distributed MPC!

  
•  Systems can communicate only if they are dynamically coupled 
•  No central coordination 

  
•  “Distributed”: Each system does local computations 

•  “Cooperative”: Each system communicates with neighbors only to solve 

global optimization problem iteratively 

 
 
 
 
 

e.g. power systems, irrigation systems, traffic networks, etc. 

1 2 3

4 5

     dynamically coupled systems, locally constrained 

Communication Constraint 

Cooperative Distributed MPC 
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Distributed Optimization Requires Structure!
•  Many distr. optimization methods available, see e.g. [Bertsekas et al., 1989]!

•  Methods allow for global optimization without central coordination!

•  Methods require structure in the global optimization problem!

Problem: Stability and feasibility enforcing components, i.e. terminal 
cost/set, are usually unstructured 

Structured 

Structured 

U

⇤(x) 2 argmin
U

Vf(x(N)) +
N�1X

k=0

l(x(k), u(k))

s.t. x(0) = x ,

x(k + 1) = Ax(k) +Bu(k) ,

(x(k), u(k)) 2 X ⇥ U ,

x(N) 2 Xf .

" MPC stability theory to be adapted to communication constraints 



Feasibility and Stability for General MPC"
Construction of Terminal Cost and Set!

 
The closed-loop system is stable if                 it holds that 
Closed-loop Stability under MPC 

Feasibility 

8x 2 Xf

        pos. invariant 

        Lyapunov 

Xf

Vf(x)

(A+BKf)
TPf(A+BKf)� Pf  �Q�KT

f RKf

Xf = {x 2 Rn | xT
Pfx  ↵}

 
1.  Quadratic terminal cost: 

2.  Ellipsoidal terminal set: 

Construction of terminal cost and set 

min

Pf,Kf

� log detP�1
f

s.t. (A+BKf)
TPf(A+BKf)� Pf  �Q�KT

f RKf

LMI via Schur complement. 

LP via support function of      . Xf

f(x) 2 U ,

x 2 X ,

Ax+Bf(x) 2 Xf ,

Vf(Ax+Bf(x))� Vf(x)  �l(x,f(x))

max

↵
↵

s.t. Xf = {x 2 Rn | xT
Pfx  ↵}, Xf ✓ X , KfXf ✓ U ; X ,U polytopic



Feasibility and Stability for Distributed MPC"
Structured Terminal Cost and Set!

(A+BKf)
TPf(A+BKf)� Pf  �Q�KT

f RKf

Xf = {x 2 Rn | xT
Pfx  ↵}

 

•  Allow               to increase as long as           decreases: 

 

 

•  Allow time-varying terminal sets: 

 

For linear systems, quadratic cost and polytopic constraints: 

                             constructed via distributed LMI, resp. LP [Conte et al., 2012]  

Alternative 

 
•  Terminal cost:                                  , each               decreasing locally 

•  Terminal set: 

Without using communication such a structure can o!en not be designed 

Suggestion 
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PWA  Hybrid Models!
•  Piecewise affine (PWA) systems!
•  Polyhedral partition of state space!
•  Affine dynamics on reach region!

if!



MLD Hybrid Model!

[Bemporad & Morari, 1999] 

Discrete time linear dynamics and logic can be combined 
into Mixed Logical Dynamical (MLD) form 

For MLD models all analysis and synthesis problems can be 
solved via Mixed Integer Linear/Quadratic Programs. 



Speedup of so!ware for MILP in 15 years 
 Linear Program  x 1000 
 Integer Program x 100 – 1000 
 Computers  x 1000 
 Overall  x 100 million 

 
 

 Integer Programming 
Preprocessing  x 2 
Heuristics  x 1.5 
Cu#ing Planes  x 50 

 
 

Source: Bixby, Gu, Rothberg, Wunderlich 2004 



Reminder "
Constrained Optimal Control of Linear Systems!
!
!
!
!
!
!
!
!
!
!

        is a cont. polyhedral piecewise affine (PPWA) function of!
!
!
!
!

Constrained Optimal Control Problem 

Idea: Model PPWA system as solution to optimal control problem!

Parametric!
QP!

[Hempel, Goulart, Lygeros, IEEE-TAC, 2014] 



Model PPWA system as solution to optimal control problem!
Theorem:!
Dynamics of any continuous PWA system can be expressed 

through parametric QP with current           as a parameter.!
!
!
!
!
•  Use Karush-Kuhn-Tucker conditions to represent optimality !
•  Hybrid dynamics represented by complementarity conditions!

!
!
!

Inverse Optimization System Models!



Inverse Optimization System Models!
Inverse parametric quadratic programming model: 

Equivalent complementary formulation: 
(from KKT conditions) 



Constrained Optimal Control Problem for PPWA Systems!
!
!
!
!
!
! !     PWA model dynamics !

!
20 example systems:!
•  6 states, 3 inputs, 7 regions!
•  Prediction horizon!
•  30 different initial states !
•  MLD solved with CPLEX (MIQP solver)!
•  Inverse optimization solved with IPOPT (NLP solver)!

MLD form!
Inverse optimization!
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PWA / MIQP
Inverse Optimization / Bilevel

Computation Times for N = 10, 600 instances!

Computation time [sec] 

Inverse optimization model solved faster than PWA model!





MIP in power electronics applications!
•  New multilevel topologies emerging for high efficiency and 

power quality!

•  Performance improvement requires accounting for binary 
nature of manipulated variables!

•  Need fast MIP solver to optimize performance in real-time!

15 independent pairs 
of switches operated 
at frequency > 1kHz,!
Horizon=50!

Control:!
�  6 capacitor voltages!
�  3 motor currents!
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Control of systems with uncertainty and constraints!

Controlling systems with both constraints and uncertainty is very difficult.!

Uncertainty Models:!
•   Parametric / multiplicative uncertainties (∆ terms)!
•   Additive uncertainties (w terms)!

Design Objectives:!
•   Robust or probabilistic constraint satisfaction!
•   Robust performance in some sense (H2, H∞ etc)!

Solvable by dynamic programming in principle.!

  Uncertain Constrained System 



Models and available methods!

Limited successes to date:!

•  Additive + bounds: Disturbance feedback / tube-based methods 
[Goulart, Kerrigan, Maciejowski 2006; Mayne, Seron, Rakovic 2005]!

•  Multiplicative + bounds : LMI-based methods [Kothare, Balakrishnan, 
Morari, 1996; Cannon, Kouvaritakis 2005]!

•  Multiplicative + known distribution : Scenario-based linear design 
methods [Calfiore, Campi 2006; Calfiore, Fagiano 2013]!

•  Additive + partial moments : Distributionally robust linear design 
methods [Van Parys, Kuhn, Goulart, Morari 2014]!

Different ways to characterize the multiplicative or additive uncertain terms:!

•  Bounded uncertainty : uncertainties known only to live in a set!
•  Known distribution : uncertainty distribution can be perfectly modelled!
•  Partial moments: limited distributional information (mean and variance)!



Problems with chance constraints!
A typical chance constraint condition:!

•  No control over severity of constraint violation in outliers.!

Most optimization-based approaches are based on sampling of 
uncertainty for finite horizon problems + MPC.!



CVaR is the center of mass of the !-tail:!

Conditional Violation at Risk constraints!

X is the zero sub-level set of the function L:!

•   The function L quantifies constraint violation severity.!

CVaR bounds imply chance constraint satisfaction:!



Distributionally Robust Control!

Problem features:!
•  Optimal solution is a linear state feedback controller.!
•  The set P   is the distributional ambiguity set.!
•  Robust CVaR constraint bounds the worst-case severity of outliers.!

•  Optimal solution can be computed by solving an SDP.!

•  Similar results for output feedback case.!

  CVaR Constrained Design Problem 

[Van Parys, Kuhn, Goulart, Morari 2014] 



Open questions for uncertain constrained systems!

•  Output feedback is mostly not well understood.!

•  Receding horizon methods for chance-constrained problems are 
mostly sampling based, with few infinite horizon results.!

•  Few clear connections to classical linear design methods.!

•  Many competing uncertainty models and numerical approaches, 
most of which are mutually incompatible.!

!
•  Most methods are sub-optimal : how can we measure their 

performance relative to the best possible controller?!
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A typical Piping & Instrumentation Diagram!

Bristol, Chem.Eng.Prog. 1980 



Supervisory Control Logic!
•  Goals!

–  Optimization: Adapt control targets for economic optimization!
–  Constraint Management: obey operational constraints !
–  Sequence transitions, e.g. start-up, shut down, reaction to failure,…!

•  Requirements!
–  Robustness!

•  Problems!
–  Analysis!
–  Synthesis!



•  Model checking of safety properties for Simulink Models!
•  Avionics distributed control system complexity:!

–  10K-250K simulink blocks!
–  40k-150K binary raw variables!
–  Hundred to few thousand bin’s after simplification/abstraction!

•  Automotive single controller complexity:!
–  5K-80K simulink blocks!
–  Few thousand bin’s after simplification/abstraction!

•  FormalSpecsVerifier tool environment (NuSMV)!

Formal Verification of Embedded Software in"
Model Based Design!

Advanced(Laboratory(on(Embedded(Systems(
S.r.l.(
A*Research*and*Innovation*Company*

Source: Alberto Ferrari 
 



Conclusions!
•  Themes of Uncertainty and Computation!
•  For implementation MPC is alternative of choice, but open 

issues:!
–  Communication constraints!
–  Switches (incl supervisory control)!
–  Uncertainty!

•  Match insight from “other methods” to MPC implementation!


