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Theory-Practice Gap

Main theme of CPC1in 1976

Explosive development of theory
had taken place

* Industry did not understand theory
« Academia had no clue about
real controller design

Exceptions: Astrém, Gilles, Balchen, ...



Theory-Practice Gap: Model Uncertainty

« Control Objective did not address robustness / uncertainty
directly. Indirect etfect of tuning parameters was not
understood (Horowitz, Shinnar, Doyle,...)

8 Ind. Eng. Chem. Process Des. Dav., Vol 18, No. 1, 1979

Design of Sampled Data Controllers

Zalman J. Palmor' and Reusl Shinnar*

Lepartment of Chemical Engineering, The City College of Tre Qity University of New York, New York, New York 10031

linearized models. A good design procedure must take into
account that there is a finite but unknown deviation
between the model used for design and the real description
of the process. This also applies to probahilistic models
of the disturbance,

5. The Controller Must Be Reasonably Insensitive
to Changes in System Parameters. It must be stable
and perform well over a reasonable range of system pa-
rameters.



When we met...

 IFAC Workshop on Robust Control Systems, Interlaken,
Switzerland, October 4-7, 1982. org. by J. Ackermann

 Participants: Barmish, Doyle, Frank, Kwakernaak, Looze,
Mansour, Morari, Olbrot, Stein, Toedtl;,...
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Mawndied Moran

Mremical Eugmeers Depadmesnd
Univerady of Whecouwsin ~ Madisan



Controllability Assessment of Design Alternatives
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Controllability Assessment of Design Alternatives
Inherent Performance Limitations
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BENAS

Robust efficiency and actuator saturation explain
healthy heart rate control and variability

Na Li?, Jerry Cruz®, Chenghao Simon Ch_ienC,d' Somayeh Sojoudi¢, Benjamin Recht', David Stone?, Marie Csete™,
Daniel Bahmiller®, and John C. Doyle<""

35chool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; ®PDepartment of Computing and Mathematical Science, California
Institute of Technology, Pasadena, CA 91125; “Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125; “Advanced
Algorithm Research Center, Philips Healthcare, Thousand Oaks, CA 91320; *Department of Neurology, New York University Comprehensive Epilepsy Center,
New York University School of Medicine, New York, NY 10016; fDepartment of Electrical Engineering and Computer Sciences and Department of Statistics,
University of California, Berkeley, CA 94720; SDepartments of Anesthesiology and Neurosurgery and the Center for Wireless Health, University of Virginia
School of Medicine, Charlottesville, VA 22908; hHuntington Medical Research Institutes, Pasadena, CA 91101; and 'Department of BioEngineering, California
Institute of Technology, Pasadena, CA 91125
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NSF Proposal 1985
Robust Controller Design for Systems with Constraints
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SCIENCE INFORMATION EXCHANGE ME FRGIET Wi

e T D A P ET T AT D

NATIONAL SCIENCE FOUNDATION
PROJECT SUMMARY

MEF AWARD KD

FOR WiF USE DNLY
CAMECTORATL/AIVEIDN IFI.ﬁﬁlAll OR BLCT oM AFORAL WL, Fr. —
b OF iRETITWOTiDN UNELVEL BRhanmim/Cane gl and BCHOGy O® DIVIEBIDN] _'l

California Institute of Technology

ASTMEES (INCLWVDE CEFARTMERT,

Chemical Engineering, 206-41
Pasadena, California 91125

FRIMCIPAL IMYESTIGATOMS,

Hamfred Morari, John C. Doyle, Carles E. Garcia

"TITLE OF PRCJECT

Robust Controller Mesipn for Systems with Constraints

For more than a decade practitioners have poimted at model uwncertainty and operating
constraints as the key difficulties in control design for chemical processes. The recently
developed concept of a Structored Singular Walue (55V) holde great promise for accounting
for model uwncertainty in o systematic manmer in comtrol system design. The maln reason for
the popularity of the model predictive contrel techniques which have appeared in the last
few years, is their ability to handle constraincs. The objeccive of the work propesed here
ia te resolve a number of practical and thooretical dssues regarding the 58V and medel
prediceive control with particular emphasie on the control problems occuring in the chemical
process industries. Thearetical advances, sofrware developsent and applications te
industrial plants are planoed through a Industry-University Cooperative Research agreement
with 5hell Development Co.
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This is the best control proposal I have seen in two decades.

know what has baen done, but what to do. At the same time, there is miuch room
creative discovery while confronting realistic difficult problems.
involvement is solid emough to ensure quick reduction of theory to practice.

RECENT RESEARCH ACHIEVEMEMNTE OF THE PRINCIFAL INVESTIGATORIS):

This 15 Tikely to enhance greatly the control engineer's ability to design for

constrained, nonlinear systems -- The hard problems.
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Cantroller Design for Systems with Constraints

Please evaluate this proposal using the criteria presented on the back of this review lorm. Continue on additional
sheel|s] as necessary.
The PIs' not onl o i

The subject proposal is one of the best I have aver seen in the procass
control field. It should be funded as guickly as possible, at the highes
possible lewval.

Impact aof the proeposed research on advancing the knowledge or technology
base:

This propesed research, combining some of the bast availabla academic tal

with skilled personnel from a major industrial corporatdon, is very likel
to have major impact on the process conerol fiald.
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NSF Proposal 1985
Robust Controller Design for Systems with Constraints

NATIONAL SCIENCE
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Manfred Morari

Process and Reaction Engineering

Industry = University Cooperative Research: Robust Controller Desiagn
for Systems with Constraints

shael| 5] as necessary.

SEE ATTACHED.

9 Pages

Impact of the propesed—Tesearch on advancing the ® edge or techmology base:

[ don't believe it will have any useful impact.
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NSF Proposal 1985
Excerpts from the “Poor” Review

The proposal has many statements obviously made to impress

the reader, but which do not stand up. For example on p. 2, "The

the values at s=0, which is ridiculous. These two claims of
practicality are fallacious marketeering, unworthy even of

ordinary business practice,

p. 11). Probably even here, the calculations are horrendous, or
the results very poor. Again and again, they must admit that
even their special (highly impractical) cases give conservative
(meaning wasteful) results, I cannot at all see the usefulness
of any of their work. So much complicated mathematics and so
much hard work if numeriecs are tried, and for what-stability

analysis which is conservative and which offers so little

insighty



Caltech 1987

IFAC 1987, Munich




Uncertainty and...

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, YOI 54, MOy 12, IR EMBER TO8R

Robust Control of Ill-Conditioned Plants:
High-Purity Distillation

SIGURD SKOGESTAD, MANFRED MORARI, memerr, ek, ann JOHN €. DOYLE

S. Skogestad is with the Department of Chemical Engineering, Norwegian
Instimte of Technology, Trondheim, Norway.

M. Mecrari and J. C. Daoyle are with the Department of Chemical
Engingering, California Institute of Technology, Pasadena, CA 91125,

Abstract—Il-conditioned plants are generally believed to be difficult to
control. Using a high-purity distillation column as an example, the
physical reason for the poor conditioning and its implications on control
system design amd performance are explained. It is shown that an
acceptable performance/robustness trade-off cannot be obtained by
simple loop-shaping techniques (via singular valwes) and that a good
understanding of the model uncertzinty is essential for robust control
system design, Physically motivated uncertainty descriptions {actuator
uncerfainty) are translated into the A _/stroctured singular value frame-
work, which is demonstrated o be a powerful tool to analyze and
understand the complex phenomena.

-



... Computation

Computational Complexity of g Calculation

Richard P. Braatz, Peter M. Young,
John C. Doyle, and Manfred Moran

Abstract— The structured singular value g measures the robustmess
of uncertain systems, Numerous researchers over the last decade have
worked on developing efficient methods for computing g#. This paper
considers the complexity of calculating g1 with general mixed real/complex
uncertainty in the framework of combinatorial complexity theory. In
particalar, it is proved that the g recognition problem with either
pure real or mixed real/complex uncertainty is NP-hard. This strongly
suggests that it is futile to pursue exact methods for calculating u of

general systems with pure real or mixed uncertainty for other than small
problems.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 5, MAY 1994



NSTABLE
PERTURBATIONS 1

L- CONDITIONED
ILN‘.STABLE PLAN%‘ 1

Skogestad, 1986

4 ¥
WITH ROBUST PERFORMANCLE
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Synthesis of Optimal Control Laws

Infinite-Horizon Optimal Control

0. @)

J*(z) = min [z, u;)

u; €U 4
1=0

S.t. Li+1 = f(xz,uz)
r; € X

Dynamic Programming e Challenge is computation!

J*(x) = mq}n Iz, u) + J(f(x,u))
s.t. (f(z,u),u) e X xU



Synthesis of Optimal Control Laws

Infinite-Horizon Optimal Control

0. @)

J*(x) = Qfﬂé%, Iz, 1)
’ i=0
S.t. Li+1 = f(xz,uz)
r; € X

Dynamic Programming e Challenge is computation!

* Closed-form solution for
J* () = min l(x,u) + J*(f(x,u)) linear systems, no
constraints only:

s.t. (f(z,u),u) € X xU LOR,...



Synthesis of Optimal Control Laws

Infinite-Horizon Optimal Control

0. @)

S.t. Li+1 = f(xz,uz)
r; € X

Dynamic Programming Model Predictive Control

J*(x) = min l(z,u) + J*(f(z,u)) J*(wo) = min ;l(xi’ui) + Vi(aw)
s.t. (f(z,u),u) e X xU s.t. (#5,u) € X XU, x5 € Xy

Tit1 = [, us)

Explicit calculation of control Online optimization problem
law u*(x) offline defines control action ug(z)



Model Predictive Control : Properties

Theory is well-established
Mayne, Rawlings, Rao, Scokaert (2000), Automatica
“MPC: Stability & Optimality (Survey Paper). “

Recursive feasibility: Input and state constraints are satisfied

Stability of the closed-loop system

— J*(x)is a convex Lyapunov function

« MPC = Nonlinear control synthesis with stability
guarantees by design !!!

 Assuming the real-time optimization problem is solved to
e-optimality



Verifiable Control Synthesis

Explicit MPC 15t Order—Fast Gradient

Approx. Explicit MPC Interior Point Opt.
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Explicit MPC 15t Order—Fast Gradient

Approx. Explicit MPC Interior Point Opt.




Explicit MPC : Online => Offline Processing

* Optimization problem is parameterized by state
 Control law piecewise affine for linear systems/constraints

* Pre-compute control law as function of state x
(parametric optimization)

Result : Online computation
dramatically reduced

( N N\
u*(xp) = argmin Zl(mi,ui) + Vi(znN)

e i=0
S.t. (CIZZ,’LL,L) e X xU |:>
Tit1 = f (@4, uq)
TN € Xf

[M.M. Seron, |].A. De Dond and G.C. Goodwin, 2000]
[T.A. Johansen, I. Peterson and O. Slupphaug, 2000]
[A. Bemporad, M. Morari, V. Dua and E.N. Pistokopoulos, 2000] ~




Verifiable Control Synthesis

Explicit MPC 15t Order Methods

* <5 states
* Simple look-up
* < us sampling

Approx. Explicit MPC




Verifiable Control Synthesis

Explicit MPC 15t Order Methods

* <5 states
* Simple look-up
* < us sampling

Approx. Explicit MPC

* <10 states
* Specified complexity
* < us sampling




Verifiable Control Synthesis

Explicit MPC 1%t Order Methods

* <5 states * Any size
 Simple look-up  Simple and robust
* < us sampling * us —ms sampling

Approx. Explicit MPC

» <10 states * Any size
* Specified complexity * Highly accurate
* < us sampling * ms sampling




Computation / Software

Formal specification Control law
* YALMIP |+ Explicit MPC
« HYSDEL -/ ¢ Fixed-complexity solutions
~ * Linear + Hybrid models ] L _ )
Verified controller Software synthesis
\ R h * Real-time workshop
“>>J >> g>> {x > '+ Bounded-time solvers
\ AR * Verifiable code generation

J/ J

Multi-Parametric Toolbox (MPT)
(Non)-Convex Polytopic Manipulation

Multi-Parametric Programming
Control of PWA and LTI systems
> 32 000 downloads to date

MPT 3.0 new in 2011



First Order Methods
FiOrdOs Code Generator

N/ FiOrdOs

First Order Optimisation

*  Matlab toolbox for automated C-code generation for first order methods

«  Considered class of multi-parametric programs:

1 .
min EKL*THKII +q'r+e H=-0,H#0
st. xeX =31 x...xXx £, elementary simple set, e.g.
Ar =15 box, ball, simplex, LP-, SOCP-cone, ...

Example: Code generation for x-axis MPC controller

Matlab |

1 -
min_ EI_JFITI_I—I—[;_" J-]f{;‘] ~ N

ey sl e s Trple sell B

Box—EszBo=(1l, "L ,wrl, "L wmax)
UH-Zimp_eSez (K ;

. addEssi_+H,BEox}; //’—____\\

% defize Zreblem, cer-ifv & coZe gen

Qo= Srol (T, LY, T, e, Trar ) solver.c (1900 LOC)
Apnr=~ApnraA L 00D, Ya T ont, Tty E> solver.h {1?4 LE}C)
Aot oortt Frdoead ong Talago

porcerts frd Toon, talgo’) mex.c (235 LOC)

Apor.genera. elads g

[Master Thesis by F. Ullmann, 2011]



Interior Point Method
FORCES Code Generator

Multistage QCQP Embedded Hardware Generated Code

min SN LT Hyv + fF v, . Solver (ANSI-C)
4 =— =

st. oz, <v; <7y

A;v; < b;

T T
v; Qi jvi + 1 jvi <1

Civi + Dig1vi41 = ¢

\4

T solver.h
Problem description o ® solver.c

stage = MultiStageProblem (N+1); F 0 R C E S solver.m

for 1 = 1:N+1 > oo > solvermex.c

% dimensions .

s o makemex

stages (i) .dims.n = 10; . C C de enerati n f

stages (i) .dims.r = 5; o 1 g IM ?1 o

stages (i) .dims.1lb = 3; prima -dua e rotra

5 cost interior point solvers MATLAB MEX interface

stages (i) .cost.H = Hi; for rapid prototypin

stages (i) .cost.f = fi; ® LPS, QPS, QCQPS piep ypmhg
. ¥ e e |

% inequalities  Parametric problems P — i

stages (i) .ineqg.b.1lbidx = 3:5; - 4

stages (i) .ineq.b.lb = zeros(3,1); ° Multi_core platforms — __ =

% equalities 1 _ § - T_'. T

stages (i) .eq.C = Ci; ° lerary free - = == ETE

stages (i) .eq.c = ci; . . — -

RSSO P * Available: forces.ethz.ch === 4N

end

generateCode (stages) :

=




Some Early Users of FORCES

HATHOLIEKE UNNVERSITEN

LEUVEN

Nonlinear MPC & MHE with ACADO
Milan Vukov, KU Leuven, 2012

ALSTOM

MPC for Wind Turbines
Marc Guadayol, ALSTOM, 2012

-

‘fnsr:_

Quadrotor Control
Marc Miiller, IDSC, ETH Zurich, 2012

Adaptive MPC for Belt Drives
Kim Listmann, ABB Ladenburg, 2012

UNIVERSITY OF
CAMBRIDGE

Donfss 1IN
o LMms  IEHE

ECOLE POLYTECHMICLIE
FEDERALE DE LALUSANNE

EHGINEERING INHOVATION

IIMII EF.1-I
B

T
MAGDEEL
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LEJIVERSITAT
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Berkeley
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Applications by the Automatic Control Lab

18 ns

10 us
20 us
25 us
50 us
5 ms

20 ms
40 ms
50 ms

500 ms

VL

A\

Multi-core thermal management (EPFL)
[Zanini et al 2010]

Voltage source inverters
[Mariethoz et al 2008]

DC/DC converters (STM)

[Mariethoz et al 2008]

Direct torque control (ABB)
[Papafotiou 2007]

AC / DC converters
[Richter et al 2010]

Electronic throttle control (Ford)
[Vasak et al 2006]

Traction control (Ford)
[Borrelli et al 2001]

Micro-scale race cars

Autonomous vehicle steering (Ford)
[Besselmann et al 2008]

Energy efficient building control (Siemens)
[Oldewurtel et al 2010]



Embedded Conic Solver [A. Domahidi, E. Chu, S. Boyd, ECC 2013]

* Goal: solve sparse second-order cone programs on embedded systems

L T R.
minimize ¢’ x K=K x Ky x...Kywhere K, =
subjectto Ax=b Q"

Gx =k h and Q" £ {(x0,x1) € Rx R"™ | x5 > |1 |2}

« Applications: robust & soft-constrained MPC w/ guarantees, min. fuel
descent, optimal power flow, robust beam forming, portfolio selection,
machine learning (robust SVMs, group lasso) + all QPs, LPs, QCQPs

 Solver implementation (primal-dual IPM): github.com/ifa-ethz/ecos
— ~800 lines of ANSI C, detects infeasibility 1000 var. problem:
— Interfaces: MATLAB, Python, Java, .NET, Julia, Scala, = Mosek 0.04 s

CVX, CVXPY, Yalmip, Spark/MLlIib, Breeze Gurobi 0.08 s

— Fastest free SOCP solver , SeDuMi  0.16s
, . SDPT3 0.55s

— Widely used, e.g. by Verizon ECOS 0.09 <

Maintained by

ECOS o= embotech™® Spinoff Fz e




. Brightbox Technologies Inc.
Bl \|PC for Building Energy Mgt

* Flawless operation in several commercial bldgs.

* Most complex building: 8 packaged units and 600 vav
boxes

= 18,176 signals processed every 5§ min.

= MPC: >300,000 vars. and >500,000
constraints (sampling time 5 mins)

April 2014, © BrightBox Technologies, Inc..



MDPC: State of the Art

MPC (on-line opt) advanced from process control brute force
to theoretically founded method of choice in many
application areas

Synthesis of nonlinear controllers with guarantees
Correct by design, not synthesis based on analysis.

Computation technology is not limiting the application of
(linear/linearized) MPC at any speed for any size problem

When and where to employ MPC in industry is still a matter
of judgment (modeling, maintenance, robustness)
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Some Open Research Areas in Control

« Distributed systems with communication constraints
 Systems with discrete decisions and switched systems
 Systems with constraints and uncertainty

* Supervisory control systems



Some Open Research Areas in Control

* Distributed systems with communication constraints

« Systems with discrete decisions and switched systems
 Systems with constraints and uncertainty

* Supervisory control systems



Cooperative Distributed MPC

M dynamically coupled systems, locally constrained

JEN;
(ZEi,ui) c Xz X Z/{Z
19— 45 e.g. Ny =1{1,2,3,4}

e.g. power systems, irrigation systems, traffic networks, etc.

Communication Constraint

* Systems can communicate only if they are dynamically coupled
* No central coordination

Cooperative Distributed MPC
» “Distributed”: Each system does local computations

» “Cooperative”: Each system communicates with neighbors only to solve

global optimization problem iteratively




Distributed Optimization Requires Structure

« Many distr. optimization methods available, see e.g. [Bertsekas et al., 1989]
« Methods allow for global optimization without central coordination

« Methods require structure in the global optimization problem

U*(x) € arg m(}n Vi(z )+ Z AR IR —— Structured
s.t. x(0) =z ,
z(k+1) = Ax(k) + Bu(k) , S Structured
(x(k),u(k )) cXxU , <«
z(N) e X

Problem: Stability and feasibility enforcing components, i.e. terminal
cost/set, are usually unstructured

= MPC stability theory to be adapted to communication constraints



Feasibility and Stability for General MPC
Construction of Terminal Cost and Set

Closed-loop Stability under MPC

The closed-loop system is stable if Vax € Xt it holds that
Kf(x) cu , P
D Feasibility
reX
Ax + Brg(x) € X; D X; pos. invariant
Vi(Ax + Bre(z)) — Ve(z) < —l(z, ()  €rrmmeemees Vi(z) Lyapunov

Construction of terminal cost and set

1. Quadratic terminal cost:

LMI via Schur complement.

min — logdet Pf_1 ,,,,,,,,
PfaKf k’/

s.t. (A+ BK;)' P(A+ BK;) — P < —Q — K{ RK;

2. Ellipsoidal terminal set:

max o« LP via support function of X;.
o &

st. Xi={zeR" | 2T Px <a}, & CX, KXy CU; X,U polytopic




Feasibility and Stability for Distributed MPC
Structured Terminal Cost and Set

M
» Terminal cost: Vi(x) = Z Vii(zi), each Vg i(z;) decreasing locally
i=1
* Terminal set: Xy = A%; X ... X X

Without using communication such a structure can often not be designed

Alternative

« Allow V;;(z;) to increase as long as Vi(x) decreases:
Vii(z!) — Vii(zo) < —li(ew,, Knvizn,) + vil@w,)

M
1=1

« Allow time-varying terminal sets:
Xei(ow) = {zs € R™ | Vi(2:) < i}, of = o +7i(zw)

For linear systems, quadratic cost and polytopic constraints:
Vii(wi), vi(xa,) constructed via distributed LMI, resp. LP [Conte et al., 2012]




Some Open Research Areas in Control

Distributed systems with communication constraints

Systems with discrete decisions and switched systems

Systems with constraints and uncertainty

Supervisory control systems



PWA Hybrid Models

» Piecewise affine (PWA) systems
 Polyhedral partition of state space
« Affine dynamics on reach region

x-space




MLD Hybrid Model

Discrete time linear dynamics and logic can be combined
into Mixed Logical Dynamical (MLD) form

[Bemporad & Morari, 1999]

w(t 4+ 1) = Az(t) + Bru(t)+B56(t) + Bzz(t)
y(t) = Cz(t) + D1u(t)+D26(t) + D3z(t)
Ep6(t) 4+ E32(8) < Eax(t) + E1ul(t) + E5
X, Y, U — [ :; ] :*{: - R-‘r&(:j*g - {O? 1}-?’&{1? = R’i"r:? 5 - {Oj 1}.;:'.1?

For MLD models all analysis and synthesis problems can be
solved via Mixed Integer Linear/Quadratic Programs.




Speedup of software for MILP in 15 years

Linear Program x 1000
Integer Program x 100 — 1000

Computers x 1000

Overall x 100 million

Integer Programming

Preprocessing X 2
Heuristics x 1.5
Cutting Planes x 50

Source: Bixby, Gu, Rothberg, Wunderlich 2004



Reminder
Constrained Optimal Control of Linear Systems

Constrained Optimal Control Problem

N
i T~ T p!
J(x) = min Zku Ty +up Ruyg
k=1
T = Az + Buy
r. e X, u.elU

. T T T
: u(xg) = argmin u” Qu + xy Ru + s~ u
Parametric (20 » 0

QP Fu+Gxy < h

u(x()is a cont. polyhedral piecewise affine (PPWA) function of x()

Idea: Model PPWA system as solution to optimal control

[Hempel, Goulart, Lygeros, IEEE-TAC, 2014]



Inverse Optimization System Models

Model PPWA system as solution to optimal control problem
Theorem:

Dynamics of any continuous PWA system can be expressed
through parametric QP with current (x, u) as a parameter.

T =A;x + Bju + f; T € Targmin J(z,(z,u))
z.u) € Q, ) o
(@, u) €LY st. (z,(x,u)) €T

P

* Use Karush-Kuhn-Tucker conditions to represent optimality
* Hybrid dynamics represented by complementarity conditions



Inverse Optimization System Models

Inverse parametric quadratic programming model:
T =Tz
¥ € argmin §zTQz + [z wl] Rz + stz

VA

1

st. Fz+ G [Z:] <h

Equivalent complementary formulation:

(from KKT conditions)
et =Tz
Q" + RT m +s+FIA=0
0< A L h—Fz*—G[x] > 0

u



Constrained Optimal Control Problem for PPWA Systems

N-1
IIZI}II iE?{rPil:j\T + Z L?QLL L+ ’agﬂuk
k=0

st (xg,ug) €X, xy €T

MLD ¢
PWA model dynamics <l N

B Inverse optimization

20 example systems:

* 6 states, 3 inputs, 7 regions

e Prediction horizon N = 10

» 30 different initial states T

« MLD solved with CPLEX (MIQP solver)

 Inverse optimization solved with IPOPT (NLP solver)



Computation Times for N = 10, 600 instances

600~

B PWA /MIQP
Jll Inverse Optimization / Bilevel
500+~
400+
300+~
200+~
100+
0 5 10 15 20 25 30

Computation time [sec]

Inverse optimization model solved faster than PWA model
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MIP in power electronics applications

« New multilevel topologies emerging for high efficiency and

power quality

UAC3b== uaCse| oy e ' T -
_| _| _| . ' | I;_"I. -i,ll currents {

9-level induction
motor drive

15 independent pairs
of switches operated

at frequency > 1kHz,
Horizon=50 L2 Yl conver tzr " L
— — — line-t()-lnlii. V(iltage‘ : 2 i
AC2b—— UAGd -.-mﬂﬁl"‘ umﬁ -:
Control: . -
~ 6 capacitor voltages~1 " "

— 3 motor currents

* Performance improvement requires accounting for binary
nature of manipulated variables

* Need fast MIP solver to optimize performance in real-time



Some Open Research Areas in Control

* Distributed systems with communication constraints

« Systems with discrete decisions and switched systems

 Systems with constraints and uncertainty

* Supervisory control systems



Control of systems with uncertainty and constraints

Uncertain Constrained System

T = (A —FALAAR):E -+ (B -+ BLABR)’L{, + Fw

reX, ueld, V(6,A)eW

Controlling systems with both constraints and uncertainty is very difficult.

Uncertainty Models:
 Parametric / multiplicative uncertainties (A terms)

« Additive uncertainties (w terms)

Design Objectives:
* Robust or probabilistic constraint satisfaction
 Robust performance in some sense (Hz, Hw etc)

Solvable by dynamic programming in principle.




Models and available methods

Different ways to characterize the multiplicative or additive uncertain terms:

* Bounded uncertainty : uncertainties known only to live in a set
« Known distribution : uncertainty distribution can be perfectly modelled
e Partial moments: limited distributional information (mean and variance)

Limited successes to date:

« Additive + bounds: Disturbance feedback / tube-based methods
[Goulart, Kerrigan, Maciejowski 2006, Mayne, Seron, Rakovic 2005]

« Multiplicative + bounds : LMI-based methods [Kothare, Balakrishnan,
Morari, 1996; Cannon, Kouvaritakis 2005]

* Multiplicative + known distribution : Scenario-based linear design
methods [Calfiore, Campi 2006; Calfiore, Fagiano 2013]

« Additive + partial moments : Distributionally robust linear design
methods [Van Parys, Kuhn, Goulart, Morari 2014]



Problems with chance constraints

A typical chance constraint condition:

P{(BtEX}Zl—E

No control over severity of constraint violation in outliers.

pdf P {gTa: < h} >1—¢€ pilf
A
/ \L< - / \ <€
- | -
, 7z ,.

Most optimization-based approaches are based on sampling of
uncertainty for finite horizon problems + MPC.



Conditional Violation at Risk constraints

CVaR is the center of mass of the e-tail:

pdf pdf
ung S hn i

/' \ CVaR I\ | (CVaR
/N AN

o =

Liz)=g =—-h Liz)=9 = —h

X is the zero sub-level set of the function L:

[ zeX < L(z)<0 J

The function L quantifies constraint violation severity.

CVaR bounds imply chance constraint satisfaction:

(]P’—CVaRC (L)) <0 —> P{zcX}> 1-6)




Distributionally Robust Control

CVaR Constrained Design Problem

inf lim Ep {:ctT Qzs + utTRut}

mEll t—o0
S.1. Tt41 = AL’Bt + B'Ult + Ewt,
limsup supP-CVaR¢ (L (z;)) < 0.

t—roo PeP

Problem features:

« Optimal solution is a linear state feedback controller.

The set P is the distributional ambiguity set.
* Robust CVaR constraint bounds the worst-case severity of outliers.
* Optimal solution can be computed by solving an SDP.

 Similar results for output feedback case.
[Van Parys, Kuhn, Goulart, Morari 2014]



Open questions for uncertain constrained systems

* Output feedback is mostly not well understood.

* Receding horizon methods for chance-constrained problems are
mostly sampling based, with few infinite horizon results.

+ Few clear connections to classical linear design methods.

* Many competing uncertainty models and numerical approaches,
most of which are mutually incompatible.

« Most methods are sub-optimal : how can we measure their
performance relative to the best possible controller?



Some Open Research Areas in Control

* Distributed systems with communication constraints
« Systems with discrete decisions and switched systems

 Systems with constraints and uncertainty

 Supervisory control systems




A typical Piping & Instrumentation Diagram

TN R

_

Bristol, Chem.Eng.Prog. 1980



Supervisory Control Logic

e Goals

— Optimization: Adapt control targets for economic optimization
— Constraint Management: obey operational constraints
— Sequence transitions, e.g. start-up, shut down, reaction to failure, ...

* Requirements
— Robustness

* Problems
— Analysis
— Synthesis



Formal Verification of Embedded Software in
Model Based Design

« Model checking of safety properties for Simulink Models

 Avionics distributed control system complexity:
— 10K-250K simulink blocks
— 40k-150K binary raw variables
— Hundred to few thousand bin’s after simplification/abstraction

* Automotive single controller complexity:
— 5K-80K simulink blocks

— Few thousand bin’s after simplification/abstraction

« FormalSpecsVerifier tool environment (NuSMV)

Source: Alberto Ferrari

®

Advanced Laboratory on Embedded Systems
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Conclusions

* Themes of Uncertainty and Computation

 For implementation MPC is alternative of choice, but open
issues:
— Communication constraints
— Switches (incl supervisory control)
— Uncertainty

« Match insight from “other methods” to MPC implementation



