
Smart Grid 

 

Steven Low 
 

Computing + Math Sciences 

Electrical Engineering  

 

 

 
 
 

 August 2014 



Smart grid team (impact of CDS) 

Caltech 
!  D. Cai, M. Chandy, N. Chen, J. Doyle, K. Dvijotham, 

M. Farivar, L. Gan, B. Hassibi, J. Ledyard, E. Mallada, 
M. Nikolai, Q. Peng, T. Teeraratkul, A. Wierman, S. 
You, C. Zhao 

 

Former 
!  S. Bose (Cornell), L. Chen (Colorado), D. Gayme 

(JHU), J. Lavaei (Columbia), Z. Liu (LBNL/SUNY), L. 
Li (Harvard), U. Topcu (Upenn) 

 



Big picture 
 
how should we evolve our energy system 
(grid)? 
 



Watershed moment 

Bell: telephone 

1876 

Tesla: multi-phase AC 

1888 Both started as natural monopolies 
Both provided a single commodity 
Both grew rapidly through two WWs 1980-90s 

1980-90s 

Deregulation 
started 

Deregulation 
started 

Power network will undergo similar architectural  
transformation that phone network went through 
in the last two decades  

? 

1969: 
DARPAnet 

Convergence 
to Internet 



Watershed moment 

Industries will be destroyed & created 
AT&T, MCI, McCaw Cellular, Qualcom 
Google, Facebook, Twitter, Amazon, eBay, Netflix 
 

Infrastructure will be reshaped 
Centralized intelligence, vertically optimized 
Distributed intelligence, layered architecture 

What will drive power network transformation ? 



Advances in power electronics 
 

Deployment of sensing, control, comm 
 
 

Four drivers 

Renewables for sustainability 
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Area to power the world by solar 

 

•  power: electricity, machines, transportations 
•  2030 usage: 44% greater than 2008 usage 
•  solar: 1kW/m2, 20% efficiency, 2000 hrs/yr 
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DER will reach 30% of Installed US Capacity by 2020  

Effectively all incremental growth in capacity will come from customers 

30% Backup Generation:    225 GW 
CHP:       122 GW 
Demand Response:       90 GW 
Solar PV:                         50 GW 
Other DG:                        25 GW 
Dist. Storage:                    3 GW 

Potential DER Total:  515 GW 

Jeff Taft, PNNL, Nov 2013 



network of  
billions of active 

distributed energy 
resources (DERs) 

DER: PV, wind tb, EV, storage, smart bldgs/appls 

Technical potential of solar power:  
> 200x world energy demand 



Risk: active DERs introduce rapid random 
fluctuations in supply, demand, power quality 
increasing risk of blackouts 

Opportunity: active DERs enables realtime 
dynamic network-wide feedback control, 
improving robustness, security, efficiency 

Caltech research: distributed control of networked DERs   

1.  Endpoint based control  
Self-manage through local sensing, comm, control 

2.  Local algorithms with global perspective 
Decompose global objectives into local algorithms 

3.  CDS tools provide 
Structure, clarity, systematic algorithm design 
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•  multiple timescales 
•  uncertainty 
•  large scale 
•  nonconvexity 
•  …… 

Key challenges 
 



Multiple timescale 

Sean Meyn, 2010 

System dynamics and controls at different timescales 
•  require different models 
•  they interact 



Uncertainty 

Loss of 2 nuclear plants in ERCOT Kirby 2003 [ORNL/TM-2003/19] 
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Fig. 1.  Governor response and contingency reserves successfully restored 

the generation/load balance after the loss of 2600 MW of generation. 
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Fig. 2.  Contingency reserves provide a coordinated response to a sudden 

loss of supply. 
 
2.2 REGULATIONS AND POLICIES 
 

While the general concepts of system operations and reliability are well established, imple-
mentation details continue to evolve as the industry is restructured. FERC, NERC, NPCC, 
NYSRC, NYISO all have rules and procedures that govern contingency reserve requirements. 
These rules tend to become more specific organizationally closer to the system operator. These 
rules are not yet consistent among organizations, but the trend toward open, technology-neutral, 
market-based solutions is clear. 

 
2.2.1 Federal Energy Regulatory Commission 
 

FERC, in its notice on Standard Market Design (SMD) (FERC 2002a), shows a clear prefer-
ence for market-based solutions for energy supply and reliability services. It also encourages 
demand participation on an equal footing with generation. The proposed SMD specifies day-
ahead markets for spinning and supplemental reserves but not for the 30-minute operating 

(1 min) 

(10 min) 

this can be very 
expensive as 
uncertainty grows 

Uncertainty creates difficulty in both control and markets 



Uncertainty 

Imagine when we have 33%+ 
renewable generation … 

(1 min) 

(10 min) 
How can load help? 

•  ubiquitous 
•  continuous 
•  fast-acting 
•  distributed 



Uncertainty 

Introduction

DAM/RTM Dynamic model

Multi-settlement Electricity Market

Who Commands the Wind?

Numerical Results

Concluding Remarks

Familiar, right?

Purchase Price $/MWh

Previous week

Spinning reserve prices PX prices $/MWh

100

150

0

50

200

250

10

20

30

40

50

60

70

APX Power NL, April 23, 2007

California, July 2000Illinois, July 1998

Ontario, November 2005 

0

1000

2000

3000

4000

5000

Mon Tues Weds Thurs Fri Mon Tues WedsWeds Thurs Fri Sat Sun

Tues Weds Thurs
Time3 6 9 12 15 18 213 6 9 12 15 18 213 6 9 12 15 18 21

Demand in MW Last Updated  11:00 AM   Predispatch  1975.11    Dispatch  19683.5

Hourly Ontario Energy Price $/MWh Last Updated  11:00 AM   Predispatch  72.79   Dispatch  90.822000

21000

18000

15000

1500

1000

500

0Fo
re

ca
st

  P
ric

es
Fo

re
ca

st
  D

em
an

d

Pr
ic

e 
(E

ur
o/

M
W

h)

Vo
lu

m
e 

 (M
W

h)
7000

6000

5000

4000

3000

2000

1000

0

400

300

200

100

0

Fri Sat Sun MonTues Wed Thus

Prev. Week Volume

Current Week Volume

Prev. Week Price

Current Week Price

Figure: Real-world price dynamics
24 / 50

Real-time price can be more than 100x the average price ! 

Sean Meyn, 2010 



Large scale  

Example: Southern California Edison 
!  4-5 million customers 

SCE Rossi feeder circuit 
!  #houses: 1,407;  #commercial/industrial: 131 
!  #transformers: 422 
!  #lines: 2,064 (multiphase, inc. transfomers) 
!  peak load: 3 – 6 MW 
!  #optimization variables: 50,000 

SCE has 4,500 feeders 
!  ~100M variables 

United States 
!  131M customers, 300K miles of transmission & distr 

lines, 3,100 utilities 
… much more DERs in the future 



sec min 5 min 60 min day year 

voltage 
regulation 

freq control 

Caltech research 

volt/var 
EV charging 

storage 

demand 
response 
(e.g. DC) 

control 
and 

optimization 

economics 
and  

regulations 

DER 
adoption 

market 
power 

OPF 

freq control 



Optimal power flow (OPF) 

OPF is solved routinely to determine 
!  How much power to generate where 
!  Parameter setting, e.g. taps, VARs 
!  Market operation & pricing 

Non-convex and hard to solve 
!  Huge literature since 1962 
!  Common practice: DC power flow (LP) 



min            tr CVV *

subject to   s j   ≤   tr YjVV
*( )  ≤   s j         v j  ≤  |Vj |2  ≤   vj

  

OPF: bus injection model 

•  nonconvex (QCQP) 
•  due to Kirchhoff’s laws 

•  cannot be designed away 
•  should exploit hidden convexity structure 

•  not just for speed and scale 



min            tr CVV *

subject to   s j   ≤   tr YjVV
*( )  ≤   s j         v j  ≤  |Vj |2  ≤   vj

  

min            tr CW

subject to   s j ≤ tr YjW( ) ≤ s j         vi ≤Wii ≤ vi
                  W ≥ 0,   rank W =1

Equivalent problem:  

Feasible sets 

convex in W 
except this constraint 

quadratic in V 
linear in W !! 



But SDP is not scalable 
enough 



Feasible set 
Consider 
•   full matrix 
•   partial matrix           defined on a chordal ext of G  
•   partial matrix           defined on G 

W
Wc(G )

WG

dec 
# vars 
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connecting distinct vertices.1 A partial matrix WF is a set of
2m+n complex numbers defined on F :

WF := {[WF ] j j, [WF ] jk, [WF ]k j |nodes j and edges ( j,k) of F}

WF can be interpreted as a matrix with entries partially specified
by these complex numbers. If F is a complete graph (in which
there is an edge between every pair of vertices) then WF is a
fully specified n⇥n matrix. A completion W of WF is any fully
specified n⇥n matrix that agrees with WF on graph F , i.e.,

[W ] j j = [WF ] j j, [W ] jk = [WF ] jk for j,( j,k) 2 F

Given an n⇥n matrix W we use WF to denote the submatrix of
W on F, i.e., the partial matrix consisting of the entries of W de-
fined on graph F . If q is a clique (a fully connected subgraph) of
F then let WF(q) denote the fully-specified principal submatrix
of WF defined on q. We extend the definitions of Hermitian,
psd, and rank-1 for matrices to partial matrices, as follows.
A partial matrix WF is Hermitian, denoted by WF = W H

F , if
[WF ] jk = [WF ]Hk j for all ( j,k) 2 F ; it is psd, denoted by WF ⌫ 0,
if WF is Hermitian and the principal submatrices WF(q) are psd
for all cliques q of F ; it is rank-1, denoted by rank WF = 1, if the
principal submatrices WF(q) are rank-1 for all cliques q of F .
We say WF is 2⇥2 psd (rank-1), denoted by WF( j,k)⌫ 0 (rank
WF( j,k) = 1) if, for all edges ( j,k) 2 F , the 2⇥ 2 principal
submatrices

[WF ]( j,k) :=

[WF ] j j [WF ] jk
[WF ]k j [WF ]kk

�

are psd (rank-1). F is a chordal graph if either F has no cycle or
all its minimal cycles (ones without chords) are of length three.
A chordal extension c(F) of F is a chordal graph that contains
F , i.e., c(F) has the same vertex set as F but an edge set that is
a superset of F’s edge set. In that case we call the partial matrix
Wc(F) a chordal extension of the partial matrix WF . Every graph
F has a chordal extension, generally nonunique. In particular a
complete supergraph of F is a trivial chordal extension of F .

For our purposes chordal graphs are important because of
the result [63, Theorem 7] that every psd partial matrix has a
psd completion if and only if the underlying graph is chordal.
When a positive definite completion exists, there is a unique
positive definite completion, in the class of all positive definite
completions, whose determinant is maximal. Theorem 2 below
extends this to rank-1 partial matrices.

B. Feasible sets
We can now characterize the feasible set V of OPF defined

in (6). Recall the undirected connected graph G = (N+,E) that
models a power network. Given a voltage vector V 2 V define
a partial matrix WG :=WG(V ): for j 2 N+ and ( j,k) 2 E,

[WG] j j := |Vj|2 (11a)
[WG] jk := VjV H

k =: [WG]
H
k j (11b)

1In this subsection we abuse notation and use n,m to denote general
integers unrelated to the number of buses or lines in a power network.

Then the constraints (5) and (3) imply that the partial matrix
WG satisfies 2

s j  Â
k:( j,k)2E

yH
jk
�
[WG] j j � [WG] jk

�
 s j, j 2 N+ (12a)

v j  [WG] j j  v j, j 2 N+ (12b)

Following Section III-C these constraints can also be written
in a (partial) matrix form as:

p j  tr F jWG  p j

q j  tr Y jWG  q j

v j  tr JjWG  v j

The converse is not always true: given a partial matrix WG
that satisfies (12) it is not always possible to recover a voltage
vector V in V. Indeed this is possible if and only if WG has
a completion W that is psd rank-1, because in that case W
satisfies (12) since y jk = 0 if ( j,k) 62 E and it can be uniquely
factored as W = VV H with V 2 V. We hence seek conditions
additional to (12) on the partial matrix WG that guarantee that
it has a psd rank-1 completion W from which V 2 V can be
recovered. Our first key result provides such a characterization.

We say that a partial matrix WG satisfies the cycle condition
if for every cycle c in G

Â
( j,k)2c

\Wjk = 0 mod 2p (13)

When \Wjk represent voltage phase differences across each line
then the cycle condition imposes that they sum to zero (mod 2p)
around any cycle. The next theorem, proved in [58, Theorem
3] and [28], implies that WG has a psd rank-1 completion W if
and only if WG is 2⇥2 psd rank-1 on G and satisfies the cycle
condition (13), if and only if it has a chordal extension Wc(G)

that is psd rank-1. 3

Consider the following conditions on (n+ 1)⇥ (n+ 1) ma-
trices W and partial matrices Wc(G) and WG:

W ⌫ 0, rank W = 1 (14)
Wc(G) ⌫ 0, rank Wc(G) = 1 (15)

WG( j,k)⌫ 0, rank WG( j,k) = 1, ( j,k) 2 E, (16)

Theorem 2: Fix a graph G on n+1 nodes and any chordal
extension c(G) of G. Assuming Wj j > 0,

⇥
Wc(G)

⇤
j j > 0 and

[WG] j j > 0, j 2 N+, we have:
(1) Given an (n+ 1)⇥ (n+ 1) matrix W that satisfies (14),

its submatrix Wc(G) satisfies (15).
(2) Given a partial matrix Wc(G) that satisfies (15), its sub-

matrix WG satisfies (16) and the cycle condition (13).
(3) Given a partial matrix WG that satisfies (16) and the

cycle condition (13), there is a completion W of WG that
satisfies (14).

2The constraint (12a) can also be written compactly in terms of the
admittance matrix Y as in [66]:

s  diag
�
WY H�  s

3The theorem also holds with psd replaced by negative semidefinite.
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Theorem 2: Fix a graph G on n+1 nodes and any chordal
extension c(G) of G. Assuming Wj j > 0,

⇥
Wc(G)

⇤
j j > 0 and

[WG] j j > 0, j 2 N+, we have:
(1) Given an (n+ 1)⇥ (n+ 1) matrix W that satisfies (14),

its submatrix Wc(G) satisfies (15).
(2) Given a partial matrix Wc(G) that satisfies (15), its sub-

matrix WG satisfies (16) and the cycle condition (13).
(3) Given a partial matrix WG that satisfies (16) and the

cycle condition (13), there is a completion W of WG that
satisfies (14).

2The constraint (12a) can also be written compactly in terms of the
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3The theorem also holds with psd replaced by negative semidefinite.

C1:  

C2:  

C3:  



Feasible set 
Consider 
•   full matrix 
•   partial matrix           defined on a chordal ext of G  
•   partial matrix           defined on G 

W
Wc(G )

WG

dec 
# vars 

IEEE TRANS. ON CONTROL OF NETWORK SYSTEMS, 2014, TO APPEAR 5

connecting distinct vertices.1 A partial matrix WF is a set of
2m+n complex numbers defined on F :

WF := {[WF ] j j, [WF ] jk, [WF ]k j |nodes j and edges ( j,k) of F}

WF can be interpreted as a matrix with entries partially specified
by these complex numbers. If F is a complete graph (in which
there is an edge between every pair of vertices) then WF is a
fully specified n⇥n matrix. A completion W of WF is any fully
specified n⇥n matrix that agrees with WF on graph F , i.e.,

[W ] j j = [WF ] j j, [W ] jk = [WF ] jk for j,( j,k) 2 F

Given an n⇥n matrix W we use WF to denote the submatrix of
W on F, i.e., the partial matrix consisting of the entries of W de-
fined on graph F . If q is a clique (a fully connected subgraph) of
F then let WF(q) denote the fully-specified principal submatrix
of WF defined on q. We extend the definitions of Hermitian,
psd, and rank-1 for matrices to partial matrices, as follows.
A partial matrix WF is Hermitian, denoted by WF = W H

F , if
[WF ] jk = [WF ]Hk j for all ( j,k) 2 F ; it is psd, denoted by WF ⌫ 0,
if WF is Hermitian and the principal submatrices WF(q) are psd
for all cliques q of F ; it is rank-1, denoted by rank WF = 1, if the
principal submatrices WF(q) are rank-1 for all cliques q of F .
We say WF is 2⇥2 psd (rank-1), denoted by WF( j,k)⌫ 0 (rank
WF( j,k) = 1) if, for all edges ( j,k) 2 F , the 2⇥ 2 principal
submatrices

[WF ]( j,k) :=

[WF ] j j [WF ] jk
[WF ]k j [WF ]kk

�

are psd (rank-1). F is a chordal graph if either F has no cycle or
all its minimal cycles (ones without chords) are of length three.
A chordal extension c(F) of F is a chordal graph that contains
F , i.e., c(F) has the same vertex set as F but an edge set that is
a superset of F’s edge set. In that case we call the partial matrix
Wc(F) a chordal extension of the partial matrix WF . Every graph
F has a chordal extension, generally nonunique. In particular a
complete supergraph of F is a trivial chordal extension of F .

For our purposes chordal graphs are important because of
the result [63, Theorem 7] that every psd partial matrix has a
psd completion if and only if the underlying graph is chordal.
When a positive definite completion exists, there is a unique
positive definite completion, in the class of all positive definite
completions, whose determinant is maximal. Theorem 2 below
extends this to rank-1 partial matrices.

B. Feasible sets
We can now characterize the feasible set V of OPF defined

in (6). Recall the undirected connected graph G = (N+,E) that
models a power network. Given a voltage vector V 2 V define
a partial matrix WG :=WG(V ): for j 2 N+ and ( j,k) 2 E,

[WG] j j := |Vj|2 (11a)
[WG] jk := VjV H

k =: [WG]
H
k j (11b)

1In this subsection we abuse notation and use n,m to denote general
integers unrelated to the number of buses or lines in a power network.

Then the constraints (5) and (3) imply that the partial matrix
WG satisfies 2

s j  Â
k:( j,k)2E

yH
jk
�
[WG] j j � [WG] jk

�
 s j, j 2 N+ (12a)

v j  [WG] j j  v j, j 2 N+ (12b)

Following Section III-C these constraints can also be written
in a (partial) matrix form as:

p j  tr F jWG  p j

q j  tr Y jWG  q j

v j  tr JjWG  v j

The converse is not always true: given a partial matrix WG
that satisfies (12) it is not always possible to recover a voltage
vector V in V. Indeed this is possible if and only if WG has
a completion W that is psd rank-1, because in that case W
satisfies (12) since y jk = 0 if ( j,k) 62 E and it can be uniquely
factored as W = VV H with V 2 V. We hence seek conditions
additional to (12) on the partial matrix WG that guarantee that
it has a psd rank-1 completion W from which V 2 V can be
recovered. Our first key result provides such a characterization.

We say that a partial matrix WG satisfies the cycle condition
if for every cycle c in G

Â
( j,k)2c

\Wjk = 0 mod 2p (13)

When \Wjk represent voltage phase differences across each line
then the cycle condition imposes that they sum to zero (mod 2p)
around any cycle. The next theorem, proved in [58, Theorem
3] and [28], implies that WG has a psd rank-1 completion W if
and only if WG is 2⇥2 psd rank-1 on G and satisfies the cycle
condition (13), if and only if it has a chordal extension Wc(G)

that is psd rank-1. 3

Consider the following conditions on (n+ 1)⇥ (n+ 1) ma-
trices W and partial matrices Wc(G) and WG:

W ⌫ 0, rank W = 1 (14)
Wc(G) ⌫ 0, rank Wc(G) = 1 (15)

WG( j,k)⌫ 0, rank WG( j,k) = 1, ( j,k) 2 E, (16)

Theorem 2: Fix a graph G on n+1 nodes and any chordal
extension c(G) of G. Assuming Wj j > 0,

⇥
Wc(G)

⇤
j j > 0 and

[WG] j j > 0, j 2 N+, we have:
(1) Given an (n+ 1)⇥ (n+ 1) matrix W that satisfies (14),

its submatrix Wc(G) satisfies (15).
(2) Given a partial matrix Wc(G) that satisfies (15), its sub-

matrix WG satisfies (16) and the cycle condition (13).
(3) Given a partial matrix WG that satisfies (16) and the

cycle condition (13), there is a completion W of WG that
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2The constraint (12a) can also be written compactly in terms of the
admittance matrix Y as in [66]:
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Wc(F) a chordal extension of the partial matrix WF . Every graph
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extends this to rank-1 partial matrices.

B. Feasible sets
We can now characterize the feasible set V of OPF defined

in (6). Recall the undirected connected graph G = (N+,E) that
models a power network. Given a voltage vector V 2 V define
a partial matrix WG :=WG(V ): for j 2 N+ and ( j,k) 2 E,

[WG] j j := |Vj|2 (11a)
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1In this subsection we abuse notation and use n,m to denote general
integers unrelated to the number of buses or lines in a power network.

Then the constraints (5) and (3) imply that the partial matrix
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Following Section III-C these constraints can also be written
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for all cliques q of F ; it is rank-1, denoted by rank WF = 1, if the
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a superset of F’s edge set. In that case we call the partial matrix
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F has a chordal extension, generally nonunique. In particular a
complete supergraph of F is a trivial chordal extension of F .

For our purposes chordal graphs are important because of
the result [63, Theorem 7] that every psd partial matrix has a
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When a positive definite completion exists, there is a unique
positive definite completion, in the class of all positive definite
completions, whose determinant is maximal. Theorem 2 below
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principal submatrices WF(q) are rank-1 for all cliques q of F .
We say WF is 2⇥2 psd (rank-1), denoted by WF( j,k)⌫ 0 (rank
WF( j,k) = 1) if, for all edges ( j,k) 2 F , the 2⇥ 2 principal
submatrices

[WF ]( j,k) :=

[WF ] j j [WF ] jk
[WF ]k j [WF ]kk

�

are psd (rank-1). F is a chordal graph if either F has no cycle or
all its minimal cycles (ones without chords) are of length three.
A chordal extension c(F) of F is a chordal graph that contains
F , i.e., c(F) has the same vertex set as F but an edge set that is
a superset of F’s edge set. In that case we call the partial matrix
Wc(F) a chordal extension of the partial matrix WF . Every graph
F has a chordal extension, generally nonunique. In particular a
complete supergraph of F is a trivial chordal extension of F .

For our purposes chordal graphs are important because of
the result [63, Theorem 7] that every psd partial matrix has a
psd completion if and only if the underlying graph is chordal.
When a positive definite completion exists, there is a unique
positive definite completion, in the class of all positive definite
completions, whose determinant is maximal. Theorem 2 below
extends this to rank-1 partial matrices.

B. Feasible sets
We can now characterize the feasible set V of OPF defined

in (6). Recall the undirected connected graph G = (N+,E) that
models a power network. Given a voltage vector V 2 V define
a partial matrix WG :=WG(V ): for j 2 N+ and ( j,k) 2 E,

[WG] j j := |Vj|2 (11a)
[WG] jk := VjV H

k =: [WG]
H
k j (11b)

1In this subsection we abuse notation and use n,m to denote general
integers unrelated to the number of buses or lines in a power network.

Then the constraints (5) and (3) imply that the partial matrix
WG satisfies 2

s j  Â
k:( j,k)2E

yH
jk
�
[WG] j j � [WG] jk

�
 s j, j 2 N+ (12a)

v j  [WG] j j  v j, j 2 N+ (12b)

Following Section III-C these constraints can also be written
in a (partial) matrix form as:

p j  tr F jWG  p j

q j  tr Y jWG  q j

v j  tr JjWG  v j

The converse is not always true: given a partial matrix WG
that satisfies (12) it is not always possible to recover a voltage
vector V in V. Indeed this is possible if and only if WG has
a completion W that is psd rank-1, because in that case W
satisfies (12) since y jk = 0 if ( j,k) 62 E and it can be uniquely
factored as W = VV H with V 2 V. We hence seek conditions
additional to (12) on the partial matrix WG that guarantee that
it has a psd rank-1 completion W from which V 2 V can be
recovered. Our first key result provides such a characterization.

We say that a partial matrix WG satisfies the cycle condition
if for every cycle c in G

Â
( j,k)2c

\Wjk = 0 mod 2p (13)

When \Wjk represent voltage phase differences across each line
then the cycle condition imposes that they sum to zero (mod 2p)
around any cycle. The next theorem, proved in [58, Theorem
3] and [28], implies that WG has a psd rank-1 completion W if
and only if WG is 2⇥2 psd rank-1 on G and satisfies the cycle
condition (13), if and only if it has a chordal extension Wc(G)

that is psd rank-1. 3

Consider the following conditions on (n+ 1)⇥ (n+ 1) ma-
trices W and partial matrices Wc(G) and WG:

W ⌫ 0, rank W = 1 (14)
Wc(G) ⌫ 0, rank Wc(G) = 1 (15)

WG( j,k)⌫ 0, rank WG( j,k) = 1, ( j,k) 2 E, (16)

Theorem 2: Fix a graph G on n+1 nodes and any chordal
extension c(G) of G. Assuming Wj j > 0,

⇥
Wc(G)

⇤
j j > 0 and

[WG] j j > 0, j 2 N+, we have:
(1) Given an (n+ 1)⇥ (n+ 1) matrix W that satisfies (14),

its submatrix Wc(G) satisfies (15).
(2) Given a partial matrix Wc(G) that satisfies (15), its sub-

matrix WG satisfies (16) and the cycle condition (13).
(3) Given a partial matrix WG that satisfies (16) and the

cycle condition (13), there is a completion W of WG that
satisfies (14).

2The constraint (12a) can also be written compactly in terms of the
admittance matrix Y as in [66]:

s  diag
�
WY H�  s

3The theorem also holds with psd replaced by negative semidefinite.
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Examples: radial unbalanced 

5.2 Simulation results

All simulations are done on a laptop, with Intel Core
2 Duo CPU at 2.66GHz, 4G RAM, and Windows 7 Pro-
fessional O.S., and the results are summarized in Tables 1
and 2. The “–” entries are filled in if a relaxation cannot
be solved to the default numerical precision 10

�7.

network BIM-SDP BFM-SDP
time ratio time ratio

13-bus 1.7s 5.7e-11 1.5s 8.2e-11
34-bus – – 3.1s 6.6e-12
37-bus 4.6s 1.0e-11 2.7s 3.8e-12

123-bus 9.3s 9.5e-8 6.8s 6.1e-12
1982-bus – – 320s 4.9e-8

Table 1: Simulation results using convex programming solver sedumi.

network BIM-SDP BFM-SDP
time ratio time ratio

13-bus 2.6s 1.1e-8 2.6s 4.6e-8
34-bus – – 4.6s 1.2e-8
37-bus 4.6s 1.9e-8 5.5s 4.5e-9

123-bus 8.4s 1.1e-8 8.1s 4.0e-9
1982-bus – – 398s 5.0e-11

Table 2: Simulation results using convex programming solver sdpt3.

Table 1 summarizes simulation results using the con-
vex programming solver sedumi, while Table 2 summa-
rizes simulations results using sdpt3 instead. Both ta-
bles are formatted in the same way: each table contains
the running results of BIM-SDP and BFM-SDP over five
test networks. For each (relaxation, network) pair, two
numbers—time and ratio—are recorded. For example, in
Table 1, for the (BIM-SDP, 13-bus networks) pair, time is
1.7s and ratio is 5.7e-11.

Time refers to the CPU time spent on interior point
method for solving convex relaxations. In the example we
gave, it takes 1.7s for sedumi to solve BIM-SDP for the
13-bus network.

Ratio quantifies how exact a relaxation is. Due to
finite numerical precision, even if BIM-SDP/BFM-SDP
is exact, the solution will only approximately satisfy
(10g)/(12h), i.e., the matrices in (10g)/(12h) will only be
approximately rank one. To quantify how close is a pos-
itive semidefinite hermitian matrix to rank one, we can
compute the top two eigenvalues �1, �2 (�1 � �2 � 0)
and look at their ratio �2/�1. The smaller ratio �2/�1,
the closer the matrix is to rank one. The maximum ra-
tio �2/�1 over all matrices in (10g)/(12h) is filled in the
“ratio” columns. In the example we gave, at the BIM-
SDP solution for the 13-bus network, the ratio �2/�1 
5.7 ⇥ 10

�11 for all matrices in (10g). Hence, BIM-SDP is
considered exact.

5.3 Discussion

BFM-SDP can be solved by sdpt3 for all test networks,
and solutions are all numerically rank-1, indicating that
BFM-SDP is exact for all test networks. Since BFM-SDP

is exact if and only if BIM-SDP is exact (Theorem 4),
BIM-SDP is also exact for all test networks.

BFM-SDP is numerically more stable than BIM-SDP:
while BIM-SDP cannot be solved for the 34-bus and 1982-
bus networks, BFM-SDP can be solved for all networks.

6 Conclusions

Two convex relaxations—BIM-SDP and BFM-SDP—
of the optimal power flow problem in multiphase radial
networks have been presented. BIM-SDP explores the
radial network topology to improve computational and
memory efficiency of a relaxation proposed in literature,
and BFM-SDP avoids ill-conditioned operation to im-
prove numerical stability of BIM-SDP. We have proved
that BIM-SDP is exact if and only if BFM-SDP is exact.
Case studies show that BFM-SDP is exact for the IEEE
13-, 34-, 37-, 123-bus networks and a real-world 1982-bus
network.
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OPF: branch flow model 
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•  numerically more stable 
•  better linear approximation for tree networks 
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Branch flow model is much more numerically stable, but 
more variables ! 

5.2 Simulation results
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fessional O.S., and the results are summarized in Tables 1
and 2. The “–” entries are filled in if a relaxation cannot
be solved to the default numerical precision 10

�7.

network BIM-SDP BFM-SDP
time ratio time ratio

13-bus 1.7s 5.7e-11 1.5s 8.2e-11
34-bus – – 3.1s 6.6e-12
37-bus 4.6s 1.0e-11 2.7s 3.8e-12

123-bus 9.3s 9.5e-8 6.8s 6.1e-12
1982-bus – – 320s 4.9e-8

Table 1: Simulation results using convex programming solver sedumi.

network BIM-SDP BFM-SDP
time ratio time ratio

13-bus 2.6s 1.1e-8 2.6s 4.6e-8
34-bus – – 4.6s 1.2e-8
37-bus 4.6s 1.9e-8 5.5s 4.5e-9

123-bus 8.4s 1.1e-8 8.1s 4.0e-9
1982-bus – – 398s 5.0e-11

Table 2: Simulation results using convex programming solver sdpt3.

Table 1 summarizes simulation results using the con-
vex programming solver sedumi, while Table 2 summa-
rizes simulations results using sdpt3 instead. Both ta-
bles are formatted in the same way: each table contains
the running results of BIM-SDP and BFM-SDP over five
test networks. For each (relaxation, network) pair, two
numbers—time and ratio—are recorded. For example, in
Table 1, for the (BIM-SDP, 13-bus networks) pair, time is
1.7s and ratio is 5.7e-11.

Time refers to the CPU time spent on interior point
method for solving convex relaxations. In the example we
gave, it takes 1.7s for sedumi to solve BIM-SDP for the
13-bus network.

Ratio quantifies how exact a relaxation is. Due to
finite numerical precision, even if BIM-SDP/BFM-SDP
is exact, the solution will only approximately satisfy
(10g)/(12h), i.e., the matrices in (10g)/(12h) will only be
approximately rank one. To quantify how close is a pos-
itive semidefinite hermitian matrix to rank one, we can
compute the top two eigenvalues �1, �2 (�1 � �2 � 0)
and look at their ratio �2/�1. The smaller ratio �2/�1,
the closer the matrix is to rank one. The maximum ra-
tio �2/�1 over all matrices in (10g)/(12h) is filled in the
“ratio” columns. In the example we gave, at the BIM-
SDP solution for the 13-bus network, the ratio �2/�1 
5.7 ⇥ 10

�11 for all matrices in (10g). Hence, BIM-SDP is
considered exact.

5.3 Discussion

BFM-SDP can be solved by sdpt3 for all test networks,
and solutions are all numerically rank-1, indicating that
BFM-SDP is exact for all test networks. Since BFM-SDP

is exact if and only if BIM-SDP is exact (Theorem 4),
BIM-SDP is also exact for all test networks.

BFM-SDP is numerically more stable than BIM-SDP:
while BIM-SDP cannot be solved for the 34-bus and 1982-
bus networks, BFM-SDP can be solved for all networks.

6 Conclusions

Two convex relaxations—BIM-SDP and BFM-SDP—
of the optimal power flow problem in multiphase radial
networks have been presented. BIM-SDP explores the
radial network topology to improve computational and
memory efficiency of a relaxation proposed in literature,
and BFM-SDP avoids ill-conditioned operation to im-
prove numerical stability of BIM-SDP. We have proved
that BIM-SDP is exact if and only if BFM-SDP is exact.
Case studies show that BFM-SDP is exact for the IEEE
13-, 34-, 37-, 123-bus networks and a real-world 1982-bus
network.
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When will SOCP be exact? 



Exactness 

Bus injection model 
!  Jabr 2006, Bai et al 2008, Lavaei & Low 2012 
!  Bose et al 2011, Zhang & Tse 2011, Sojoudi & 

Lavaei 2012, Bose et al 2012, … 
!  Lesieutre et al 2011, … 

Branch flow model 
!  Baran & Wu 1989, Chiang & Baran 1990, Taylor 

2011, Farivar et al SGC2011, … 
!  Farivar et al TPS2013, Gan et al TAC2014, Bose et 

al TAC2014 

•  For tree networks, SOCP always exact practically 
•  For general networks, often exact empirically but no theory 
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dynamic model 
e.g. swing eqtn 
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Frequency control is traditionally done on generation side 



model can be formulated as a minimum variance controller
that computes changes in thermostat setpoint required to
achieve desired aggregated power responses.

Fig. 7 depicts one of the central results of the paper.
The top panel of the figure shows two lines. The first is the
zero-mean high-frequency component of a wind plant’s
output plus a direct current (dc) shift equal to the average
demand of the TCL population under control. The second
line is aggregate demand from the controlled population
(in this case, 60 000 air conditioners), where they are
subjected to shifts in their temperature setpoint as shown
in the bottom panel of the figure (these shifts are dictated
by the minimum variance controller). The middle panel of
the figure shows the controller error, which is relatively
small.

In Section III-D, load controllability was discussed in
the context of availability and willingness to participate.
These concepts are implicitly taken into account in the
hysteretic form of control associated with thermostats. As
the temperature nears either end of the deadband, a TCL
becomes available for control. It becomes increasingly
willing to participate in control as the temperature
approaches the switching limit. However, once the TCL
has switched state (encountered the deadband limit), it is
temporarily no longer available for control.

Assuming relatively constant ambient temperature, the
controllability of a large population of TCLs will vary little
over time. However, large temperature changes affect the

availability of TCLs for control. For example, a significant
drop in ambient temperature would eventually result in far
fewer air conditioning loads. System operations would
need to take account of such temporal changes in load
controllability.

B. Plug-In Electric Vehicles
PEVs are expected to comprise around 25% of all

automobile sales in the United States by 2020 [59]. At
those penetration levels, PEVs will account for 3%–6% of
total electrical energy consumption. It is anticipated that
most vehicles will charge overnight, when other loads are
at a minimum. The proportion of PEV load during that
period will therefore be quite high. Vehicle charging tends
to be rather flexible, though must observe the owner-
specified completion time. PEVs therefore offer another
excellent end-use class for load control.

Motivated by the control strategy for TCLs developed
in [33], a hysteretic form of local control can be used to
establish system-level controllability of PEV charging
loads. The proposed local control strategy is illustrated in
Fig. 8. The nominal SoC profile is defined as the linear
path obtained by uniform charging, such that the desired
total energy Etot is delivered to the PEV over the period
defined by owner-specified start and finish times. The
nominal SoC profile lies at the center of a deadband; for
this example, the deadband limits are given by

!þðtÞ ¼ SoCðtÞ þ 0:05Etot

!%ðtÞ ¼ SoCðtÞ % 0:05Etot (1)

where SoCðtÞ is the nominal SoC at time t.
When the charger is turned on, the SoC actually

increases at a rate that is faster than the nominal profile, so

Fig. 7. Load control example for balancing variability from

intermittent renewable generators, where the end-use functionVin

this case, thermostat setpointVis used as the input signal.

See [33] for more details.

Fig. 8. Hysteresis-based PEV charging scheme.

Callaway and Hiskens: Achieving Controllability of Electric Loads
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Can household Grid Friendly 
appliances follow its own PV 
production? 

Dynamically adjust  
thermostat setpoint 

•  60,000 AC 
•  avg demand ~ 140 MW 
•  wind var: +- 40MW 
•  temp var: 0.15 degC 



swing dynamics 

Network model 
Generator bus (may contain load):  
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Real branch power flow: 



Frequency control 
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Suppose the system is in steady state 
 
 
and suddenly … 

ωi = 0    Pij = 0



Given: disturbance in gens/loads 
 
Current: adapt remaining generators 

!  to re-balance power 
!  restore nominal freq and inter-area flows 

(zero ACE)   
 
Our goal: adapt controllable loads 

!  … same as above … 
!  while minimizing disutility of load control 
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How to design feedback control law 

Load-side controller design 
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di = Fi ω(t),P(t)( )



Control goals 

!  Rebalance power 
!  Resynchronize/stabilize frequency 
!  Restore nominal frequency 
!  Restore scheduled inter-area flows 

 

Load-side controller design 
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Design approach: forward engineering 

!  formalize control goals as OLC 
!  derive local control as distributed solution 

 

Load-side controller design 
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Optimal load control (OLC) 

demand = supply 
per bus 

min
d,d̂,P,R
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Primary frequency control 
!  Completely decentralized load control works 

!     network dynamics + active load control   
 = primal-dual algorithm for OLC 

!  Feedback system is GAS 

Secondary frequency control 
!  Each load maintains internal dynamic vars 

and communicates with neighbors 
!  … same as above 

 

Summary 

Load-side frequency control works ! 

di = Fi ωi (t)( )



Simulations 

59.964 Hz 
ERCOT threshold 
for freq control 

load-side participation improves 
transient as well as steady state 
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Fig. 8. Frequency at bus 12, with AGC only, with OLC only, or with both of them.
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Fig. 9. Total mismatch between electric power and mechanic power, with AGC only, with OLC only, or with both of them.

oscillations in both frequency and electric-mechanic power mismatch. With OLC only, electric

power and mechanic power are balanced in a short time, and the frequency is quickly driven to

some value close to 60 Hz, but will not be driven to 60 Hz. When OLC is implemented together

with AGC, the frequency can be driven to 60 Hz and electric power is balanced with mechanic

power. Moreover, compared to the case of using AGC only, the settling time is decreased, and

the overshooting in frequency and the oscillations in both frequency and electric-mechanic power

mismatch are significantly alleviated. The result shows that adding OLC can improve the transient

performance of AGC.

VI. CONCLUSION

We proposed an optimal load control (OLC) problem in power transmission networks. The

objective of OLC is to minimize a measure of disutility of participation in load control, subject
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load-side participation improves 
transient as well as steady state 


