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individuals have lots of
interesting data...
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individuals hold data...
.what if it’s sensitive?
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data privacy|

data privacy day

data privacy laws

data privacy act

data privacy policy

data privacy safe harbor
data privacy breaches
data privacy legislation
data privacy audit

data privacy through optimal k-anonymization
data privacy laws us
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* Finding statistical correlations
* Genotype/phenotype associations
* Correlating medical outcomes with risk
factors or events

* Publishing aggregate statistics

* Noticing events/outliers
* Intrusion detection
* Disease outbreaks

* Datamining/learning tasks
* Use customer data to update strategies

See personalized recommendations

Sign in




what to promise about output?

access to the output should
not enable one to learn

anything about an individual
that could not be learned
without access




what if wanted to do a study
about smoking and cancer?

there IS a
correlation
of XXX

public
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what to promise about output!?

think of output as randomized

promise: if you leave
the database, no

outcome will change
probability by very
much




more formally...

® Database D a set of rows, one per person

® Sanitizing algorithm M probabilistically maps
D to event or object in outcome space




differential privacy
[DinurNissim03, DworkNissimMcSherrySmith06]

e-Differential Privacy for mechanism M:
For any two neighboring data sets D, D>,
any C € range(M),

PriM(D /) € C] < e® Pr[M(D2) € C]




differential privacy
Pr[M(D1) € C] < e Pr[M(D2) € C]
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differential privacy
Pr[M(D)) € C] < e° Pr[M(D2) € C]

frfatio bounded

Pr [response]

- —
Bad Responses: / / /




(e.6)-differential privacy
Pr[M(D/) € C] < e° Pr[M(D) € C]+5

frfatio bounded

Pr [response]

Bad Responses:



differential privacy
Pr[M(D)) € C] < e° Pr[M(D2) € C]

s a statistical property of mechanism behavior
® unaffected by auxiliary information

¢ independent of adversary's computational
power



differential privacy
Pr[M(D1) € C] < e° Pr[M(D) € C]

promise: if you leave
the database, no

outcome will change
probability by ver
much




yes!
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if your output is a number...

cancer
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add noise with
particular shape



scale of noise depends on
sensitivity of function to compute

maxpi,02 [f(D1) —f(D2)]

for neighboring data sets Dy, D>

® measures how much one person can affect
output

® sensitivity is 1 for counting queries that
count number of rows satisfying a predicate
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more concrete

name DOB

John Doe 12/1/51
Jane Smith 3/3/46
Ellen Jones 4/24/59
Jennifer Kim [3/1/70
Rachel Waters |9/5/43




Hardt-Ligett-McSherry
algorithm

repeat:

| . use Exponentially VWeighted Sampling to find

query poorly served by our current
approximation

2. measure it using Additive Noise

3. use this measurement to improve our
distribution using Multiplicative Veights update
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we can do something useful with individuals’
data once we have it... but...

® participation!?

® lying about data!’

® compensation!?

® model harm from privacy loss!?

® even that quantity could be revealing...
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