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Hamiltonian Uncertainty Propagation on Lie Groups
H

e Many mechanical systems of contemporary engineering interest
have configuration manifolds that are products of Lie groups and
homogeneous spaces.

e Efficient characterization of uncertainty in simulations is important
in order to quantity the reliability of the simulation results in the
face of uncertainty in initial conditions and model parameters.

e The advection of a probability density by a dynamical flow is funda-
mental to problems of data assimilation, machine learning, system
identification, and state estimation.

e Moments of a distribution do not make sense on a manitfold, there-
fore we need to consider alternative representations of probability
densities on manifolds.



Uncertainty Propagation
H

e Liouvile equation: describes the propagation ot a probability
density p along a vector field X without diffusion.

e If the vector field is Hamiltonian, it reduces to % =

e The probability density is preserved along a Hamiltonian flow.

o Augment the base space of spacetime with additional directions
corresponding to parameters with uncertainty in them.

e Instead of using trajectories of sample points to compute statistics,
as in Monte Carlo, use it to reconstruct the distribution.

e The uncertainty distribution is advected by the flow, and the
flows at different parametric values are uncoupled.



Uncertainty Propagation
H

e Consider an initial uniform probability
density on an ellipsoid. Since the flow
is symplectic, it is volume-preserving.

e But can we arbitrarily compress the
probability distribution in one direction
at the expense of the other directions?

e The nonsqueezing theorem states that the initial projected volume
of a subdomain onto position-momentum planes is a lower bound
to the projected volume of the symplectic image of the subdomain.

e It is therefore essential that the uncertainty in a Hamiltonian sys-
tem be propagated using a symplectic method.



Uncertainty Propagation
=

e Use Lie group variational integrators for the individual flows.

e Use noncommutative harmonic analysis. Complete basis
for L?(G) using irreducible unitary group representations.

e More explicitly, a group representation ¢ : G — GL(C") is a
group homomorphism, i.e., ©(g - h) = p(g) - @(h).

e The Peter-Weyl theorem states,
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and g — (), ¢(g) - ;) form a basis for the vector space V.

e For compact Lie groups and Lie groups with bi-invariant Haar mea-
sures, techniques from computational harmonic analysis generalize,
including Fast Fourier Transforms, Plancherel theorem.



Lagrangian Variational Integrators

B Discrete Variational Principle

q(0) varied curve qi  varied point

e Discrete Lagrangian

h
La(q0. 1) =~ LG (q0, q1) = /o L (go.1(t), 4o 1(t)) dt,

where qq 1(¢) satisfies the Euler-Lagrange equations for L and the
boundary conditions ¢y 1(0) = qo, go.1(h) = q1.
e Discrete Euler-Lagrange equation

Do Lg(q0, 1) + D1Lg(q1, g2) = 0.



Galerkin Variational Integrators
B Variational Characterization of Lg{m
e An alternative characterization of the exact discrete Lagrangian,

h
L) = et [ Llgdo)de
qeC([0,n],Q) JO

q(0)=q0,q(h)=q1
which naturally leads to Galerkin discrete Lagrangians.

B Galerkin Discrete Lagrangians

o Replace the infinite-dimensional function space C2([0, h], Q) with
a finite-dimensional function space.

e Replace the integral with a numerical quadrature formula.



Galerkin Variational Integrators
H
e Under suitable technical hypotheses:

o Regularity of L in a closed and bounded neighboorhood;
o The quadrature rule is sufficiently accurate:
o The discrete and continuous trajectories minimize their actions;

the Galerkin discrete Lagrangian has the same approximation prop-
erties as the best approximation error of the approximation space.

e The critical assumption is action minimization. For Lagrangians
L=q¢ M¢— V(q), and sufficiently small h, this assumption holds.

e Spectral variational integrators are geometrically convergent.

e The Galerkin curves converge at the square root of the rate of
convergence of the solution at discrete times.



Galerkin Variational Integrators

B Numerical Results: Order Optimal Convergence

One Step Map Convergence with h—Refinement
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e Order optimal convergence of the Kepler 2-body problem with ec-
centricity 0.6 over 100 steps of h = 2.0.
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Spectral Galerkin Variational Integrators

B Numerical Results: Geometric Convergence

Convergence with N-Refinement
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e Geometric convergence of the Kepler 2-body problem with eccen-
tricity 0.6 over 100 steps of h = 2.0.
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Comparison of inner solar system orbital diagrams from a spectral
variational integrator and the JPL Solar System Dynamics Group.

h = 100 days, T = 27 years, 25 Chebyshev points per step.
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Comparison of outer solar system orbital diagrams from a spectral
variational integrator and the JPL Solar System Dynamics Group.
Inner solar system was aggregated, and h = 1825 days.
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Spectral Lie Group Variational Integrators
B Numerical Experiments: 3D Pendulum

2
1.5
1
0.5
0
-0.5
-1
-15

-2

tis 8.2365

en = 20, h = 0.6. The black dots represent the discrete solution,
and the solid lines are the Galerkin curves. Some steps involve a
rotation angle of almost 7, which is close to the chart singularity.
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Spectral Lie Group Variational Integrators
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Explicit Euler MATLAB ode4b Lie Group Variational Integrator

e The conserved quantities are the norm of body angular momentum,
and the energy. Trajectories lie on the intersection of the angular
momentum sphere and the energy ellipsoid.

e These figures illustrate the extent to the numerical methods pre-
serve the quadratic invariants.
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Variational Lie Group Techniques
O

e To stay on the Lie group, we parametrize the curve by the initial
point gp, and elements of the Lie algebra &;, such that,

ga(t) = exp (Z €an,s(t)) 90
e This involves standard interpolatory methods on the Lie algebra

that are lifted to the group using the exponential map.

e Automatically stays on the Lie group without the need for repro-
jection, constraints, or local coordinates.

e Cayley transtorm based methods perform 5-6 times faster, without
loss of geometric conservation properties.



Example of a Lie Group Variational Integrator
B 3D Pendulum

e Lagrangian

L) =g [ Gl dm = ViR)

where = : R3 —R3%3 is a skew mapping such that Ty = z x v.

e Equations of motion
Jw~+wx Jw=M,
v 1 TV
WhereM—aR R—R on
R = R.
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Example of a Lie Group Variational Integrator
B 3D Pendulum

e Discrete Lagrangian

1 h h
Ly(Ry, F) = o (I3xg — Fy)Jgq) — §V(Rk) — §V(Rk+1)-

e Discrete Equations of Motion

h h

JW]{+1:FEJCU]C‘|‘§M]C+§ k+15
1
S(ka) — E (Fde — Jng) ,

Ry = Ryl
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Example of a Lie Group Variational Integrator
H

e The magic begins with the ansatz,
Fk = ef’f,
and the Rodrigues’ formula, which converts the equation,

— 1
Jwp =+ (Fde - JdFkT) ,

into

sin || f | L — cos || fi
hJwy = Ji X J fi.
1% | &l

e Since F}. is the exponential of a skew matrix, it is a rotation matrix,
and by matrix multiplication R, = RiF}, 1s a rotation matrix.

Jfir. +
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Uncertainty Propagation
B Symplectic Uncertainty Propagation Algorithm
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propagated
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B Incorporating Diffusion: Splitting Method

e A diffusion problem reduces to a type of the heat equation, which
can be solved efficiently using computational harmonic analysis.

e GGeneral uncertainty propagation problems can be decomposed into
advection and diffusion.



Uncertainty Propagation Example on SO(3)

Q7
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Information Geometry and Discrete Mechanics
=

e Divergence functions are non-symmetric measures of proximity;,
such as the Kullback-Leibler, or Bergman divergences.

e Divergence functions encode a metric, and they are first-order accu-
rate symplectic generating functions for the geodesic flow, and are
second-order accurate when the information manifold is Hessian.

e Given a sequence of estimates {x;} and samples of the actual dis-
tributin {y; }, we can construct a discrete Lagrangian for generating
the discrete dynamics for a machine learning application by using,

Lg(, wi+1) = D(wi, vit1) + D(@it1, Yit1),
where D(-, -) defines both the metric and the potential.
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Summary
]

e A combination of Lie group ideas with variational integrators, with
the properties:
o global, and singularity-free.
o symplectic, momentum preserving.

o automatically stays on the Lie group without the need for con-
straints, reprojection, or local coordinates.

o Allows the propagation of uncertainty on nonlinear spaces, without
assuming that the density is localized to a single coordinate chart.

e A combination of noncommutative harmonic analysis, generalized
polynomial chaos, and Lie group variational integrators.
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