Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group

Melvin Leok

Mathematics, University of California, San Diego

Foundations of Dynamics Session, CDS@20 Workshop Caltech, Pasadena, CA, August 2014

mleok@math.ucsd.edu
http://www.math.ucsd.edu/~mleok/

Supported by NSF DMS-0726263, DMS-100152, DMS-1010687 (CAREER), CMMI-1029445, DMS-1065972, CMMI-1334759, DMS-1411792, DMS-1345013

Hamiltonian Uncertainty Propagation on Lie Groups Nonlinear Uncertainty Propagation on Lie Groups

- Many mechanical systems of contemporary engineering interest have configuration manifolds that are products of Lie groups and homogeneous spaces.
- Efficient characterization of uncertainty in simulations is important in order to quantify the reliability of the simulation results in the face of uncertainty in initial conditions and model parameters.
- The advection of a probability density by a dynamical flow is fundamental to problems of data assimilation, machine learning, system identification, and state estimation.
- Moments of a distribution do not make sense on a manifold, therefore we need to consider alternative representations of probability densities on manifolds.

- Symplectic Uncertainty Propagation
 - Liouvile equation: describes the propagation of a probability density p along a vector field X without diffusion.
 - If the vector field is Hamiltonian, it reduces to $\frac{dp}{dt} = 0$.
 - The probability density is preserved along a Hamiltonian flow.

The essential ideas

- Augment the base space of spacetime with additional directions corresponding to parameters with uncertainty in them.
- Instead of using trajectories of sample points to compute statistics, as in Monte Carlo, use it to **reconstruct the distribution**.
- The uncertainty distribution is **advected** by the flow, and the flows at different parametric values are uncoupled.

The role of symplecticity

- Consider an initial uniform probability density on an ellipsoid. Since the flow is symplectic, it is volume-preserving.
- But can we arbitrarily compress the probability distribution in one direction at the expense of the other directions?

Gromov's nonsqueezing theorem in symplectic geometry

- The nonsqueezing theorem states that the initial projected volume of a subdomain onto position-momentum planes is a lower bound to the projected volume of the symplectic image of the subdomain.
- It is therefore essential that the uncertainty in a Hamiltonian system be propagated using a symplectic method.

Extensions to Lie Groups

• Use Lie group variational integrators for the individual flows.

- Use noncommutative harmonic analysis. Complete basis for $L^2(G)$ using irreducible unitary group representations.
- More explicitly, a **group representation** $\varphi : G \to GL(\mathbb{C}^n)$ is a group homomorphism, i.e., $\varphi(g \cdot h) = \varphi(g) \cdot \varphi(h)$.
- The **Peter-Weyl theorem** states,

$$L^2(G) = \bigoplus_{\varphi \in \hat{G}} V_{\varphi},$$

and $g \mapsto \langle e^j, \varphi(g) \cdot e_i \rangle$ form a basis for the vector space V_{φ} .

• For compact Lie groups and Lie groups with bi-invariant Haar measures, techniques from computational harmonic analysis generalize, including Fast Fourier Transforms, Plancherel theorem.

Lagrangian Variational Integrators

Discrete Variational Principle q(t) varied curve q(a) $\delta q(t)$ q(b) q'

• Discrete Lagrangian

$$L_d(q_0, q_1) \approx L_d^{\text{exact}}(q_0, q_1) \equiv \int_0^h L\left(q_{0,1}(t), \dot{q}_{0,1}(t)\right) dt,$$

where $q_{0,1}(t)$ satisfies the Euler–Lagrange equations for L and the boundary conditions $q_{0,1}(0) = q_0$, $q_{0,1}(h) = q_1$.

• Discrete Euler-Lagrange equation

 $D_2L_d(q_0, q_1) + D_1L_d(q_1, q_2) = 0.$

Galerkin Variational Integrators

Variational Characterization of L_d^{exact}

• An alternative characterization of the exact discrete Lagrangian,

$$L_d^{\text{exact}}(q_0, q_1) \equiv \underset{\substack{q \in C^2([0,h],Q)\\q(0) = q_0, q(h) = q_1}}{\text{ext}} \int_0^h L(q(t), \dot{q}(t)) dt,$$

which naturally leads to Galerkin discrete Lagrangians.

Galerkin Discrete Lagrangians

- Replace the infinite-dimensional function space $C^2([0, h], Q)$ with a **finite-dimensional function space**.
- Replace the integral with a **numerical quadrature formula**.

Galerkin Variational Integrators

Theorem: Optimality of Galerkin Variational Integrators

- Under suitable technical hypotheses:
 - \circ Regularity of L in a closed and bounded neighboorhood;
 - The quadrature rule is sufficiently accurate;
 - The discrete and continuous trajectories *minimize* their actions;

the Galerkin discrete Lagrangian has the same approximation properties as the best approximation error of the approximation space.

- The critical assumption is action minimization. For Lagrangians $L = \dot{q}^T M \dot{q} V(q)$, and sufficiently small h, this assumption holds.
- Spectral variational integrators are **geometrically convergent**.
- The Galerkin curves converge at the square root of the rate of convergence of the solution at discrete times.

Galerkin Variational Integrators

Numerical Results: Order Optimal Convergence

• Order optimal convergence of the Kepler 2-body problem with eccentricity 0.6 over 100 steps of h = 2.0.

Spectral Galerkin Variational Integrators Numerical Results: Geometric Convergence

• Geometric convergence of the Kepler 2-body problem with eccentricity 0.6 over 100 steps of h = 2.0.

Spectral Variational Integrators Numerical Experiments: Solar System Simulation

- Comparison of inner solar system orbital diagrams from a spectral variational integrator and the JPL Solar System Dynamics Group.
- h = 100 days, T = 27 years, 25 Chebyshev points per step.

Spectral Variational Integrators Numerical Experiments: Solar System Simulation

• Comparison of outer solar system orbital diagrams from a spectral variational integrator and the JPL Solar System Dynamics Group. Inner solar system was aggregated, and h = 1825 days.

Spectral Lie Group Variational Integrators Numerical Experiments: 3D Pendulum

• n = 20, h = 0.6. The black dots represent the discrete solution, and the solid lines are the Galerkin curves. Some steps involve a rotation angle of almost π , which is close to the chart singularity.

Spectral Lie Group Variational Integrators Numerical Experiments: Free Rigid Body

- The conserved quantities are the norm of body angular momentum, and the energy. Trajectories lie on the intersection of the angular momentum sphere and the energy ellipsoid.
- These figures illustrate the extent to the numerical methods preserve the quadratic invariants.

Variational Lie Group Techniques

Basic Idea

• To stay on the Lie group, we parametrize the curve by the initial point g_0 , and elements of the Lie algebra ξ_i , such that,

$$g_d(t) = \exp\left(\sum \xi^s \tilde{l}_{\kappa,s}(t)\right) g_0$$

- This involves standard interpolatory methods on the Lie algebra that are lifted to the group using the exponential map.
- Automatically stays on the Lie group without the need for reprojection, constraints, or local coordinates.
- Cayley transform based methods perform 5-6 times faster, without loss of geometric conservation properties.

Example of a Lie Group Variational Integrator **3D** Pendulum

• Lagrangian

$$L(R,\omega) = \frac{1}{2} \int_{Body} \left\| \widehat{(\tilde{\rho})} \omega \right\|^2 dm - V(R),$$

where $\widehat{\cdot} : \mathbb{R}^3 \to \mathbb{R}^{3 \times 3}$ is a skew mapping such that $\widehat{x}y = x \times y$.

• Equations of motion

$$J\dot{\omega} + \omega \times J\omega = M,$$

where $\widehat{M} = \frac{\partial V}{\partial R}^T R - R^T \frac{\partial V}{\partial R}.$
 $\dot{R} = R\widehat{\omega}.$

Example of a Lie Group Variational Integrator 3D Pendulum

• Discrete Lagrangian

$$L_d(R_k, F_k) = \frac{1}{h} \operatorname{tr} \left[(I_{3 \times 3} - F_k) J_d \right] - \frac{h}{2} V(R_k) - \frac{h}{2} V(R_{k+1}).$$

• Discrete Equations of Motion

$$J\omega_{k+1} = F_k^T J\omega_k + \frac{h}{2}M_k + \frac{h}{2}M_{k+1},$$

$$S(J\omega_k) = \frac{1}{h} \left(F_k J_d - J_d F_k^T \right),$$

$$R_{k+1} = R_k F_k.$$

Example of a Lie Group Variational Integrator Automatically staying on the rotation group

• The magic begins with the ansatz,

$$F_k = e^{\widehat{f}_k},$$

and the Rodrigues' formula, which converts the equation,

$$\widehat{J\omega_k} = \frac{1}{h} \left(F_k J_d - J_d F_k^T \right),$$

into

$$hJ\omega_k = \frac{\sin \|f_k\|}{\|f_k\|} Jf_k + \frac{1 - \cos \|f_k\|}{\|f_k\|^2} f_k \times Jf_k.$$

• Since F_k is the exponential of a skew matrix, it is a rotation matrix, and by matrix multiplication $R_{k+1} = R_k F_k$ is a rotation matrix.

Symplectic Uncertainty Propagation Algorithm

Incorporating Diffusion: Splitting Method

- A diffusion problem reduces to a type of the heat equation, which can be solved efficiently using computational harmonic analysis.
- General uncertainty propagation problems can be decomposed into advection and diffusion.

Uncertainty Propagation Example on SO(3) Visualization of Attitude Uncertainty on a Sphere

Propagation of Attitude Uncertainty on SO(3)

Information Geometry and Discrete Mechanics

Divergence functions

- Divergence functions are non-symmetric measures of proximity, such as the Kullback–Leibler, or Bergman divergences.
- Divergence functions encode a metric, and they are first-order accurate symplectic generating functions for the geodesic flow, and are second-order accurate when the information manifold is Hessian.

Applications to Machine Learning

• Given a sequence of estimates $\{x_i\}$ and samples of the actual distributin $\{y_i\}$, we can construct a discrete Lagrangian for generating the discrete dynamics for a machine learning application by using,

$$L_d(x_i, x_{i+1}) = \mathcal{D}(x_i, x_{i+1}) + \mathcal{D}(x_{i+1}, y_{i+1}),$$

where $\mathcal{D}(\cdot, \cdot)$ defines both the metric and the potential.

Summary

Lie group variational integrators

- A combination of Lie group ideas with variational integrators, with the properties:
 - global, and singularity-free.
 - symplectic, momentum preserving.
 - automatically stays on the Lie group without the need for constraints, reprojection, or local coordinates.

Uncertainty Propagation on Lie groups

- Allows the propagation of uncertainty on nonlinear spaces, without assuming that the density is localized to a single coordinate chart.
- A combination of noncommutative harmonic analysis, generalized polynomial chaos, and Lie group variational integrators.

References

- 1. J. Hall, ML, Spectral Variational Integrators, arXiv:1211.4534.
- 2. J. Hall, ML, Lie Group Spectral Variational Integrators, arXiv:1402.3327.
- 3. T. Lee, ML, N.H. McClamroch, *Global Symplectic Uncertainty Propagation on SO*(3), Proc. IEEE Conf. on Decision and Control, 61-66, 2008.

Computational Geometric Mechanics at San Diego Department of Mathematics, UC San Diego http://www.math.ucsd.edu/~mleok/ Students: Helen Parks, Joe Salamon, John Moody, Gautam Wilkins, Jeremy Schmitt.

Happy 20th Anniversary Control and Dynamical Systems!

Dedicated to the memory of Jerrold E. Marsden, 1942–2010

Advisor, mentor, role model, collaborator, colleague, and friend.