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Hamiltonian Uncertainty Propagation on Lie Groups

� Nonlinear Uncertainty Propagation on Lie Groups

•Many mechanical systems of contemporary engineering interest
have configuration manifolds that are products of Lie groups and
homogeneous spaces.

• Efficient characterization of uncertainty in simulations is important
in order to quantify the reliability of the simulation results in the
face of uncertainty in initial conditions and model parameters.

• The advection of a probability density by a dynamical flow is funda-
mental to problems of data assimilation, machine learning, system
identification, and state estimation.

•Moments of a distribution do not make sense on a manifold, there-
fore we need to consider alternative representations of probability
densities on manifolds.
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Uncertainty Propagation

� Symplectic Uncertainty Propagation

• Liouvile equation: describes the propagation of a probability
density p along a vector field X without diffusion.

• If the vector field is Hamiltonian, it reduces to dp
dt = 0.

• The probability density is preserved along a Hamiltonian flow.

� The essential ideas

• Augment the base space of spacetime with additional directions
corresponding to parameters with uncertainty in them.

• Instead of using trajectories of sample points to compute statistics,
as in Monte Carlo, use it to reconstruct the distribution.

• The uncertainty distribution is advected by the flow, and the
flows at different parametric values are uncoupled.
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Uncertainty Propagation
� The role of symplecticity

• Consider an initial uniform probability
density on an ellipsoid. Since the flow
is symplectic, it is volume-preserving.

• But can we arbitrarily compress the
probability distribution in one direction
at the expense of the other directions?

� Gromov’s nonsqueezing theorem in symplectic geometry

• The nonsqueezing theorem states that the initial projected volume
of a subdomain onto position-momentum planes is a lower bound
to the projected volume of the symplectic image of the subdomain.

• It is therefore essential that the uncertainty in a Hamiltonian sys-
tem be propagated using a symplectic method.
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Uncertainty Propagation

� Extensions to Lie Groups

• Use Lie group variational integrators for the individual flows.

• Use noncommutative harmonic analysis. Complete basis
for L2(G) using irreducible unitary group representations.

•More explicitly, a group representation ϕ : G→ GL(Cn) is a
group homomorphism, i.e., ϕ(g · h) = ϕ(g) · ϕ(h).

• The Peter-Weyl theorem states,

L2(G) =
⊕

ϕ∈Ĝ
Vϕ,

and g 7→ 〈ej, ϕ(g) · ei〉 form a basis for the vector space Vϕ.

• For compact Lie groups and Lie groups with bi-invariant Haar mea-
sures, techniques from computational harmonic analysis generalize,
including Fast Fourier Transforms, Plancherel theorem.
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Lagrangian Variational Integrators

� Discrete Variational Principle

q a(  )

q b(  )

dq t( )

Q

q t( ) varied curve

q0

qN

dqi

Q

qi varied point

•Discrete Lagrangian

Ld(q0, q1) ≈ Lexact
d (q0, q1) ≡

∫ h

0
L
(
q0,1(t), q̇0,1(t)

)
dt,

where q0,1(t) satisfies the Euler–Lagrange equations for L and the
boundary conditions q0,1(0) = q0, q0,1(h) = q1.

•Discrete Euler-Lagrange equation

D2Ld(q0, q1) + D1Ld(q1, q2) = 0.



7

Galerkin Variational Integrators

� Variational Characterization of Lexact
d

• An alternative characterization of the exact discrete Lagrangian,

Lexact
d (q0, q1) ≡ ext

q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q(t), q̇(t))dt,

which naturally leads to Galerkin discrete Lagrangians.

� Galerkin Discrete Lagrangians

• Replace the infinite-dimensional function space C2([0, h], Q) with
a finite-dimensional function space.

• Replace the integral with a numerical quadrature formula.
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Galerkin Variational Integrators

� Theorem: Optimality of Galerkin Variational Integrators

• Under suitable technical hypotheses:

◦ Regularity of L in a closed and bounded neighboorhood;

◦ The quadrature rule is sufficiently accurate;

◦ The discrete and continuous trajectories minimize their actions;

the Galerkin discrete Lagrangian has the same approximation prop-
erties as the best approximation error of the approximation space.

• The critical assumption is action minimization. For Lagrangians
L = q̇TMq̇−V (q), and sufficiently small h, this assumption holds.

• Spectral variational integrators are geometrically convergent.

• The Galerkin curves converge at the square root of the rate of
convergence of the solution at discrete times.
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Galerkin Variational Integrators

� Numerical Results: Order Optimal Convergence
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• Order optimal convergence of the Kepler 2-body problem with ec-
centricity 0.6 over 100 steps of h = 2.0.
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Spectral Galerkin Variational Integrators

� Numerical Results: Geometric Convergence
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• Geometric convergence of the Kepler 2-body problem with eccen-
tricity 0.6 over 100 steps of h = 2.0.
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Spectral Variational Integrators

� Numerical Experiments: Solar System Simulation
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• Comparison of inner solar system orbital diagrams from a spectral
variational integrator and the JPL Solar System Dynamics Group.

• h = 100 days, T = 27 years, 25 Chebyshev points per step.
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Spectral Variational Integrators

� Numerical Experiments: Solar System Simulation
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• Comparison of outer solar system orbital diagrams from a spectral
variational integrator and the JPL Solar System Dynamics Group.
Inner solar system was aggregated, and h = 1825 days.
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Spectral Lie Group Variational Integrators

� Numerical Experiments: 3D Pendulum
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• n = 20, h = 0.6. The black dots represent the discrete solution,
and the solid lines are the Galerkin curves. Some steps involve a
rotation angle of almost π, which is close to the chart singularity.
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Spectral Lie Group Variational Integrators

� Numerical Experiments: Free Rigid Body

Explicit Euler MATLAB ode45 Lie Group Variational Integrator

• The conserved quantities are the norm of body angular momentum,
and the energy. Trajectories lie on the intersection of the angular
momentum sphere and the energy ellipsoid.

• These figures illustrate the extent to the numerical methods pre-
serve the quadratic invariants.
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Variational Lie Group Techniques

� Basic Idea

• To stay on the Lie group, we parametrize the curve by the initial
point g0, and elements of the Lie algebra ξi, such that,

gd(t) = exp
(∑

ξsl̃κ,s(t)
)
g0

• This involves standard interpolatory methods on the Lie algebra
that are lifted to the group using the exponential map.

• Automatically stays on the Lie group without the need for repro-
jection, constraints, or local coordinates.

• Cayley transform based methods perform 5-6 times faster, without
loss of geometric conservation properties.
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Example of a Lie Group Variational Integrator

� 3D Pendulum

• Lagrangian

L(R,ω) =
1

2

∫
Body

‖(̂ρ̃)ω‖
2
dm− V (R),

where ·̂ : R3→R3×3 is a skew mapping such that x̂y = x× y.

• Equations of motion

Jω̇ + ω × Jω = M,

where M̂ = ∂V
∂R

T
R−RT ∂V∂R.

Ṙ = Rω̂.
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Example of a Lie Group Variational Integrator

� 3D Pendulum

•Discrete Lagrangian

Ld(Rk, Fk) =
1

h
tr [(I3×3 − Fk)Jd]−

h

2
V (Rk)− h

2
V (Rk+1).

•Discrete Equations of Motion

Jωk+1 = FTk Jωk +
h

2
Mk +

h

2
Mk+1,

S(Jωk) =
1

h

(
FkJd − JdFTk

)
,

Rk+1 = RkFk.
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Example of a Lie Group Variational Integrator

� Automatically staying on the rotation group

• The magic begins with the ansatz,

Fk = ef̂k,

and the Rodrigues’ formula, which converts the equation,

Ĵωk =
1

h

(
FkJd − JdFTk

)
,

into

hJωk =
sin ‖fk‖
‖fk‖

Jfk +
1− cos ‖fk‖
‖fk‖2

fk × Jfk.

• Since Fk is the exponential of a skew matrix, it is a rotation matrix,
and by matrix multiplication Rk+1 = RkFk is a rotation matrix.
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Uncertainty Propagation

� Symplectic Uncertainty Propagation Algorithm

t = tk t = tk+1 t = tk+1

initial
uncertainty

pk

Hamiltonian
flow F

sample values of
propagated
uncertainty

propagated
uncertainty

pk+1

noncommutative
harmonic
analysis

reconstruction

� Incorporating Diffusion: Splitting Method

• A diffusion problem reduces to a type of the heat equation, which
can be solved efficiently using computational harmonic analysis.

• General uncertainty propagation problems can be decomposed into
advection and diffusion.
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Uncertainty Propagation Example on SO(3)

� Visualization of Attitude Uncertainty on a Sphere

� Propagation of Attitude Uncertainty on SO(3)

t = 0.0 t = 0.2 t = 0.4 t = 1



21

Information Geometry and Discrete Mechanics

� Divergence functions

• Divergence functions are non-symmetric measures of proximity,
such as the Kullback–Leibler, or Bergman divergences.

• Divergence functions encode a metric, and they are first-order accu-
rate symplectic generating functions for the geodesic flow, and are
second-order accurate when the information manifold is Hessian.

� Applications to Machine Learning

• Given a sequence of estimates {xi} and samples of the actual dis-
tributin {yi}, we can construct a discrete Lagrangian for generating
the discrete dynamics for a machine learning application by using,

Ld(xi, xi+1) = D(xi, xi+1) +D(xi+1, yi+1),

where D(·, ·) defines both the metric and the potential.
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Summary

� Lie group variational integrators

• A combination of Lie group ideas with variational integrators, with
the properties:

◦ global, and singularity-free.

◦ symplectic, momentum preserving.

◦ automatically stays on the Lie group without the need for con-
straints, reprojection, or local coordinates.

� Uncertainty Propagation on Lie groups

• Allows the propagation of uncertainty on nonlinear spaces, without
assuming that the density is localized to a single coordinate chart.

• A combination of noncommutative harmonic analysis, generalized
polynomial chaos, and Lie group variational integrators.
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