Sufficient Statistics for Decentralized Decision

> Sanjay Lall, Stanford August 7, 2014

On the 20th anniversary of CDS at Caltech

# Outline

1

- abstractly describe controller structure
- *separation* structure
- sufficient statistics
- decentralized generalization

State-space results

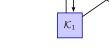
# Example: two-player state-feedback control

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_{11} & 0 \\ B_{21} & B_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + w$$

minimize  

$$\lim_{T\to\infty} \frac{1}{T} \operatorname{E} \int_0^T \|Fx(t) + Du(t)\|^2 dt$$
player 1 measures  $x_1$ 

player 2 measures  $x_1, x_2$ 



 $S_1$ 



 $S_2$ 

 $\mathcal{K}_2$ 

$$u_1 = K_{11}x_1 + K_{12}x_{2|1}$$
  
$$u_2 = K_{21}x_1 + K_{22}x_{2|1} + J(x_{2|1} - x_2)$$

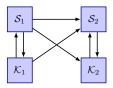
Swigart and Lall, ACC 2010, Matni and Doyle, CDC 2013

# Example: two-player output-feedback control

$$\begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & 0\\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} B_{11} & 0\\ B_{21} & B_{22} \end{bmatrix} \begin{bmatrix} u_1\\ u_2 \end{bmatrix} + w$$
$$\begin{bmatrix} y_1\\ y_2 \end{bmatrix} = \begin{bmatrix} C_{11} & 0\\ C_{21} & C_{22} \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + v$$

minimize  
$$\lim_{T \to \infty} \frac{1}{T} \operatorname{E} \int_0^T \|Fx(t) + Du(t)\|^2 dt$$

player 1 measures  $y_1$ player 2 measures  $y_1, y_2$ 





$$u_1 = K_{11}x_{1|1} + K_{12}x_{2|1}$$
  
$$u_2 = K_{21}x_{1|1} + K_{22}x_{2|1} + J(x_{2|1} - x_{2|2}) + H(x_{1|1} - x_{1|2})$$

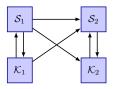
Lessard and Lall, Allerton 2011

#### Example: nonlinear systems

$$\begin{aligned} x_1^{t+1} &= f_1(x_1^t, u_1^t, w_1^t) \\ x_2^{t+1} &= f_2(x_1^t, x_2^t, u_1^t, u_2^t, w_2^t) \end{aligned}$$

minimize  $\sum_{t=0}^{T} \operatorname{E} g(x^t, u^t)$ 

player 1 measures  $x_1$ player 2 measures  $x_1, x_2$ 

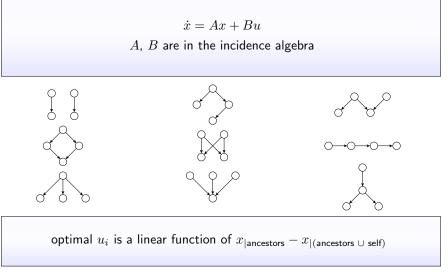




$$u_1^t = \mu_1^t(x_1^t, p_{2|1}^t) \ u_2^t = \mu_2^t(x_1^t, x_2^t, p_{2|1}^t)$$

Wu and Lall, AAAI 2010

# Example: transitively closed graphs



Swigart thesis 2010, Shah and Parrilo 2010, Lamperski and Doyle 2011

# **Status**

7

- some LQ problems: we know the structure
- others: we know the controller, but not the structure
- few nonlinear problems

Sufficient Statistics

### Stochastic decision problems

minimize 
$$E c(x, u)$$
  
subject to  $u = \mu(y)$ 

- given joint pdf of x, y, find best  $\mu$
- *e.g.*, estimation: with c = ||x u||
- can generate y, x with a model, e.g., y = Ax + w
- hypothesis testing, classification, detection, decision, etc.,

# Sufficient statistics

 $\begin{array}{ll} \mbox{minimize} & & \mbox{E}\,c(x,u) \\ \mbox{subject to} & & u=\mu(y) \end{array}$ 

```
s = g(y) is called sufficient for x \mid y if
```

 $y \, \bot \!\!\! \bot \, x \mid s$ 

- equivalently  $\operatorname{prob}(x \mid s, y)$  does not depend on y
- conditional distribution  $x \mid y$  depends only on s
- Fisher 1922, Kolmogorov 1942

# Sufficient statistics

 $\begin{array}{ll} \mbox{minimize} & & \mbox{E}\,c(x,u) \\ \mbox{subject to} & & u=\mu(y) \end{array}$ 

s = g(y) is called *sufficient* for  $x \mid y$  if

 $y \, \bot \!\!\! \bot \, x \mid s$ 

optimal policy has the form  $u = \mu(s)$ 

- does not depend on cost function
- s may be much smaller than y
- saves communications, storage, sensors, ...

#### **Examples:** sufficient statistics

- Gaussian noisy measurements  $y_i = x + w_i$  then  $s = \sum_i y_i$
- multiplicative uniform noise:  $y_i = xw_i$  then  $s = \max_i y_i$
- $y_i$  is Bernoulli with  $\operatorname{prob}(y_i = 1 \mid x) = x$ , then  $s = \sum_i y_i$
- if y = Ax + w and w is Gaussian, then  $s = A^T y$
- y<sub>i</sub> has discrete uniform distribution on [0, x], then s = max<sub>i</sub> y<sub>i</sub> called German tank problem
- many others . . .

# Team Sufficiency

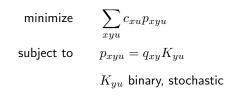
all results in Jeff Wu's thesis

### Team decision problems

minimize 
$$\operatorname{E} c(x, u_1, \dots, u_n)$$
  
subject to  $u_i = \mu_i(y_i)$ 

- given joint distribution  $x, y_1, \ldots, y_n$ , find n policies  $\mu_i$
- formulated by Marschak, 55
- quadratic and Gaussian: Radner, 62
- general case NP-hard, Tsitsiklis and Athans, 85
- H<sub>2</sub> model matching

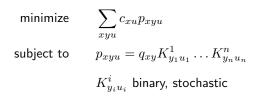
# Optimization



- easy; separate problem for each y
- LP relaxation corresponds to randomized policies  $u = \mu(y, w)$

u is generated by  $u=\mu(y,w)$  iff  $u \, {\perp\!\!\!\!\perp} \, x \mid y$ 

# Optimization



• relax the feasible set to convex hull

$$p_{xyu} \in \operatorname{co}\left\{q_{xy}K_{y_1u_1}^1 \dots K_{y_nu_n}^n \mid K^i \text{ binary, stochastic}\right\} = H$$

does not change cost

#### **Team decisions**

we say random variables  $u_1, \ldots, u_n$  are a *team decision*, denoted

$$u_1,\ldots,u_n \perp x \mid y_1,\ldots,y_n$$

if  $p_{xyu} \in \operatorname{co} \left\{ q_{xy} K_{y_1 u_1}^1 \dots K_{y_n u_n}^n \mid K^i \text{ binary, stochastic} \right\}$ 

- $u_1, \ldots, u_n \perp x \mid y_1, \ldots, y_n$  if and only if u is generated by common randomness  $u_i = \mu(y_i, w)$
- reduces to conditional independence in single player case
- $u_1, \ldots, u_n \perp x \mid y_1, \ldots, y_n$  implies  $(u_1, \ldots, u_n) \perp x \mid (y_1, \ldots, y_n)$

# Relaxation

minimize 
$$E c(x, u)$$
  
subject to  $u_1, \ldots, u_n \perp x \mid y_1, \ldots, y_n$ 

• not an algorithm, but very useful definition

#### Multi-player sufficient statistics

minimize 
$$\operatorname{E} c(x, u_1, \dots, u_n)$$
  
subject to  $u_i = \mu_i(y_i)$ 

if  $s_i = g_i(y_i)$ , then  $s_1, \ldots, s_n$  are called *team sufficient* for  $x \mid y_1, \ldots, y_n$  if  $y_1, \ldots, y_n \coprod x \mid s_1, \ldots, s_n$ 

theorem: if s is team sufficient, then there exists an optimal policy of the form

$$u_i = \mu_i(s_i)$$

### Multi-player sufficient statistics

- $s_1, \ldots, s_n$  is team sufficient if  $y_1, \ldots, y_n \coprod x \mid s_1, \ldots, s_n$
- then there is a deterministic optimal controller  $u_i = \mu_i(s_i)$
- optimal and deterministic even though s is defined in terms of
  - convex hull of feasible distributions
  - randomized policies

# Example: Two players

suppose

 $s_1$  is sufficient for  $x, y_2 \mid y_1$  $s_2$  is sufficient for  $x, y_1 \mid y_2$ 

then  $s_1, s_2$  is team sufficient for  $x \mid y_1, y_2$ 

for example, if  $x, y_1, y_2$  are jointly Gaussian, then

$$s_1 = \mathrm{E}\left(\begin{bmatrix}x\\y_2\end{bmatrix} \mid y_1\right) \qquad s_2 = \mathrm{E}\left(\begin{bmatrix}x\\y_1\end{bmatrix} \mid y_2\right)$$

#### **Example:** Triangular

- measurements:  $y_1 = z_1$  and  $y_2 = (z_1, z_2)$
- suppose

$$r_1$$
 is sufficient for  $r_2 \mid z_1$   
 $r_2$  is sufficient for  $x \mid z_1, z_2$ 

• then  $s_1, s_2$  are team sufficient statistics for  $x \mid y_1, y_2$ , where

$$s_1 = r_1$$
$$s_2 = (r_1, r_2)$$

Gaussian case

$$s_1 = \mathcal{E}(x \mid z_1) s_2 = (\mathcal{E}(x \mid z_1), \mathcal{E}(x \mid z_1, z_2))$$

#### Example: Quadratic cost

player 1 measures  $z_1$  and player 2 measures  $z_1, z_2$ , cost is

$$\mathbf{E}\begin{bmatrix}x\\u_1\\u_2\end{bmatrix}^{\mathsf{T}}Q\begin{bmatrix}x\\u_1\\u_2\end{bmatrix}$$

optimal policy is

$$u_1 = K_1 x_{|1}$$
  
$$u_2 = K_2 x_{|1} + H(x_{|12} - x_{|1})$$

where

$$\begin{bmatrix} K_1 \\ K_2 \end{bmatrix} = \begin{bmatrix} Q_{22} & Q_{23} \\ Q_{32} & Q_{33} \end{bmatrix}^{-1} \begin{bmatrix} Q_{21} \\ Q_{31} \end{bmatrix} \qquad H = -Q_{33}^{-1}Q_{31}$$

# **Constructing sufficient statistics**

for single player case, can construct from distribution:

- $\operatorname{prob}(y \mid x) = h(y)f(g(y), x)$  for some functions h, f
- the conditional distribution of  $x \mid y$  is a function of s

many algebraic rules; write  $suff(x \mid y)$  for the set of sufficient statistics

• 
$$h(s) \in \operatorname{suff}(x \mid y) \implies s \in \operatorname{suff}(x \mid y)$$
  
•  $s \in \operatorname{suff}(x \mid y) \implies s \in \operatorname{suff}(f(x, s) \mid y)$   
• if  $z \perp y \mid x$  then  $s \in \operatorname{suff}(x \mid y) \implies s \in \operatorname{suff}(x, z \mid y)$   
• if  $x \perp u \mid y$  then  $s \in \operatorname{suff}(x \mid y) \implies s \in \operatorname{suff}(x \mid y, u)$   
• if  $x \perp z \mid y$  then  $s \in \operatorname{suff}(x, z \mid y) \iff s \in \operatorname{suff}(x \mid y)$  and  $s \in \operatorname{suff}(z \mid y)$ 

# Constructing team sufficient statistics

#### elimination theorem: if

$$s_n$$
 is sufficient for  $(x, y_1, \dots, y_{n-1}) \mid y_n$   
 $(s_1, \dots, s_{n-1})$  is team sufficient for  $(x, s_n) \mid y_1, \dots, y_{n-1}$ 

then

$$s_1,\ldots,s_n$$
 is team sufficient for  $x\mid y_1,\ldots,y_n$ 

- given a team sufficient statistic for n-1 players, constructs one for n players
- allows algebraic, inductive construction
- extensions of this result exist

# Graphs example

| $x_2 = f_{21}(x_1, w_2)$ | $z_1 = h_1(x_1, v_1)$ | $y_1 = z_1$        |
|--------------------------|-----------------------|--------------------|
| $x_3 = f_{31}(x_1, w_3)$ | $z_2 = h_2(x_2, v_2)$ | $y_2 = (z_1, z_2)$ |
|                          | $z_3 = h_3(x_3, v_3)$ | $y_3 = (z_1, z_3)$ |

pick  $s_i$  so that

 $\begin{array}{l} s_3 \text{ is sufficient for } x_1, x_3 \mid y_3 \\ s_2 \text{ is sufficient for } x_1, x_2 \mid y_2 \\ s_1 \text{ is sufficient for } s_2 \mid y_1 \text{ and for } s_3 \mid y_1 \end{array}$ 



 $s_1, (s_1, s_2), (s_1, s_3)$  are team sufficient for  $x \mid y_1, y_2, y_3$ 

Dynamics

# **Dynamics**

$$\begin{aligned} x^{t+1} &= f(x^t, w^t) \\ y^t &= h(x^t, w^t) \end{aligned}$$

- well-known stochastic filter allows update of belief state  $\operatorname{prob}(x^t \mid y^0, \dots, y^t)$
- Kalman filter in linear Gaussian case
- sufficient statistics: if  $s^t$  is sufficient for  $x^t \mid y^0, \dots, y^t$  then

$$\left(s^{t},y^{t+1}
ight)$$
 is sufficient for  $x^{t+1}\mid y^{0},\ldots,y^{t+1}$ 

# **Dynamics**

Suppose we have dynamics with measurements

$$x^{t+1} = f(x^t, w^t)$$
$$y_1^t = h_1(x^t, w^t)$$
$$\vdots$$
$$y_m^t = h_m(x^t, w^t)$$

if  $s_1^t,\ldots,s_m^t$  is team sufficient for  $x^t \mid y_1^{0:t},\ldots,y_m^{0:t}$  , then

 $(s_1^t, y_1^{t+1}), \dots, (s_m^t, y_m^{t+1})$  is team sufficient for  $x^{t+1} \mid y_1^{0:t+1}, \dots, y_m^{0:t+1}$ 

# Example: Updating on graphs

$$\begin{aligned} x_1^{t+1} &= f_1(x_1^t, w_1^t) & z_1^t = h_1(x_1^t, v_1^t) & y_1^t = z_1^t \\ x_2^{t+1} &= f_2(x_1^t, x_2^t, w_2^t) & z_2^t = h_2(x_2^t, v_2^t) & y_2 = (z_1^t, z_2^t) \end{aligned}$$

update team sufficient statistics

$$\begin{split} s_1^{t+1} &\in \mathrm{suff}(s_2^{t+1} \mid s_1^t, y_1^{t+1}) \\ s_2^{t+1} &\in \mathrm{suff}(x^{t+1} \mid s_1^t, s_2^t, y_2^{t+1}) \end{split}$$

 $s_1^t, (s_1^t, s_2^t)$  are team sufficient for  $x^t \mid y_1^{0:t}, y_2^{0:t}$ 

### Example: Updating on graphs

$$\begin{aligned} x_1^{t+1} &= f_1(x_1^t, w_1^t) & z_1^t = h_1(x_1^t, v_1^t) & y_1^t = z_1^t \\ x_2^{t+1} &= f_2(x_1^t, x_2^t, w_2^t) & z_2^t = h_2(x_2^t, v_2^t) & y_2 = (z_1^t, z_2^t) \end{aligned}$$



in the Gaussian case

$$s_1^t = \mathbf{E}(x^t \mid y_1^{0:t})$$
$$s_2^t = \mathbf{E}(x^t \mid y_2^{0:t})$$

- player 1 estimates x given its information
- player 2 runs the same estimator as player 1, plus an additional one

# Summary

- new concept: sufficient statistics for multi-player problems
  - reduction in size of states and storage
  - maintains optimality independent of cost
  - fundamental to state-space synthesis
  - see thesis by Jeff Wu, Stanford
- many algebraic tools
- constructive algorithms for certain graphs
- updating algorithms
- dynamic programming

Thank you: Kishan Baheti, NSF, Fariba Fahroo, AFOSR/DARPA Former students: Laurent Lessard, John Swigart, Jeff Wu