Sufficient Statistics for Decentralized Decision

> Sanjay Lall, Stanford August 7, 2014

On the 20th anniversary of CDS at Caltech

Outline

1

- abstractly describe controller structure
- *separation* structure
- sufficient statistics
- decentralized generalization

State-space results

Example: two-player state-feedback control

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_{11} & 0 \\ B_{21} & B_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + w$$

minimize

$$\lim_{T\to\infty} \frac{1}{T} \operatorname{E} \int_0^T \|Fx(t) + Du(t)\|^2 dt$$
player 1 measures x_1

player 2 measures x_1, x_2

 S_1

 S_2

 \mathcal{K}_2

$$u_1 = K_{11}x_1 + K_{12}x_{2|1}$$

$$u_2 = K_{21}x_1 + K_{22}x_{2|1} + J(x_{2|1} - x_2)$$

Swigart and Lall, ACC 2010, Matni and Doyle, CDC 2013

Example: two-player output-feedback control

$$\begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & 0\\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} B_{11} & 0\\ B_{21} & B_{22} \end{bmatrix} \begin{bmatrix} u_1\\ u_2 \end{bmatrix} + w$$
$$\begin{bmatrix} y_1\\ y_2 \end{bmatrix} = \begin{bmatrix} C_{11} & 0\\ C_{21} & C_{22} \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + v$$

minimize
$$\lim_{T \to \infty} \frac{1}{T} \operatorname{E} \int_0^T \|Fx(t) + Du(t)\|^2 dt$$

player 1 measures y_1 player 2 measures y_1, y_2

$$u_1 = K_{11}x_{1|1} + K_{12}x_{2|1}$$

$$u_2 = K_{21}x_{1|1} + K_{22}x_{2|1} + J(x_{2|1} - x_{2|2}) + H(x_{1|1} - x_{1|2})$$

Lessard and Lall, Allerton 2011

Example: nonlinear systems

$$\begin{aligned} x_1^{t+1} &= f_1(x_1^t, u_1^t, w_1^t) \\ x_2^{t+1} &= f_2(x_1^t, x_2^t, u_1^t, u_2^t, w_2^t) \end{aligned}$$

minimize $\sum_{t=0}^{T} \operatorname{E} g(x^t, u^t)$

player 1 measures x_1 player 2 measures x_1, x_2

$$u_1^t = \mu_1^t(x_1^t, p_{2|1}^t) \ u_2^t = \mu_2^t(x_1^t, x_2^t, p_{2|1}^t)$$

Wu and Lall, AAAI 2010

Example: transitively closed graphs

Swigart thesis 2010, Shah and Parrilo 2010, Lamperski and Doyle 2011

Status

7

- some LQ problems: we know the structure
- others: we know the controller, but not the structure
- few nonlinear problems

Sufficient Statistics

Stochastic decision problems

minimize
$$E c(x, u)$$

subject to $u = \mu(y)$

- given joint pdf of x, y, find best μ
- *e.g.*, estimation: with c = ||x u||
- can generate y, x with a model, e.g., y = Ax + w
- hypothesis testing, classification, detection, decision, etc.,

Sufficient statistics

 $\begin{array}{ll} \mbox{minimize} & & \mbox{E}\,c(x,u) \\ \mbox{subject to} & & u=\mu(y) \end{array}$

```
s = g(y) is called sufficient for x \mid y if
```

 $y \, \bot \!\!\! \bot \, x \mid s$

- equivalently $\operatorname{prob}(x \mid s, y)$ does not depend on y
- conditional distribution $x \mid y$ depends only on s
- Fisher 1922, Kolmogorov 1942

Sufficient statistics

 $\begin{array}{ll} \mbox{minimize} & & \mbox{E}\,c(x,u) \\ \mbox{subject to} & & u=\mu(y) \end{array}$

s = g(y) is called *sufficient* for $x \mid y$ if

 $y \, \bot \!\!\! \bot \, x \mid s$

optimal policy has the form $u = \mu(s)$

- does not depend on cost function
- s may be much smaller than y
- saves communications, storage, sensors, ...

Examples: sufficient statistics

- Gaussian noisy measurements $y_i = x + w_i$ then $s = \sum_i y_i$
- multiplicative uniform noise: $y_i = xw_i$ then $s = \max_i y_i$
- y_i is Bernoulli with $\operatorname{prob}(y_i = 1 \mid x) = x$, then $s = \sum_i y_i$
- if y = Ax + w and w is Gaussian, then $s = A^T y$
- y_i has discrete uniform distribution on [0, x], then s = max_i y_i called German tank problem
- many others . . .

Team Sufficiency

all results in Jeff Wu's thesis

Team decision problems

minimize
$$\operatorname{E} c(x, u_1, \dots, u_n)$$

subject to $u_i = \mu_i(y_i)$

- given joint distribution x, y_1, \ldots, y_n , find n policies μ_i
- formulated by Marschak, 55
- quadratic and Gaussian: Radner, 62
- general case NP-hard, Tsitsiklis and Athans, 85
- H₂ model matching

Optimization

- easy; separate problem for each y
- LP relaxation corresponds to randomized policies $u = \mu(y, w)$

u is generated by $u=\mu(y,w)$ iff $u \, {\perp\!\!\!\!\perp} \, x \mid y$

Optimization

• relax the feasible set to convex hull

$$p_{xyu} \in \operatorname{co}\left\{q_{xy}K_{y_1u_1}^1 \dots K_{y_nu_n}^n \mid K^i \text{ binary, stochastic}\right\} = H$$

does not change cost

Team decisions

we say random variables u_1, \ldots, u_n are a *team decision*, denoted

$$u_1,\ldots,u_n \perp x \mid y_1,\ldots,y_n$$

if $p_{xyu} \in \operatorname{co} \left\{ q_{xy} K_{y_1 u_1}^1 \dots K_{y_n u_n}^n \mid K^i \text{ binary, stochastic} \right\}$

- $u_1, \ldots, u_n \perp x \mid y_1, \ldots, y_n$ if and only if u is generated by common randomness $u_i = \mu(y_i, w)$
- reduces to conditional independence in single player case
- $u_1, \ldots, u_n \perp x \mid y_1, \ldots, y_n$ implies $(u_1, \ldots, u_n) \perp x \mid (y_1, \ldots, y_n)$

Relaxation

minimize
$$E c(x, u)$$

subject to $u_1, \ldots, u_n \perp x \mid y_1, \ldots, y_n$

• not an algorithm, but very useful definition

Multi-player sufficient statistics

minimize
$$\operatorname{E} c(x, u_1, \dots, u_n)$$

subject to $u_i = \mu_i(y_i)$

if $s_i = g_i(y_i)$, then s_1, \ldots, s_n are called *team sufficient* for $x \mid y_1, \ldots, y_n$ if $y_1, \ldots, y_n \coprod x \mid s_1, \ldots, s_n$

theorem: if s is team sufficient, then there exists an optimal policy of the form

$$u_i = \mu_i(s_i)$$

Multi-player sufficient statistics

- s_1, \ldots, s_n is team sufficient if $y_1, \ldots, y_n \coprod x \mid s_1, \ldots, s_n$
- then there is a deterministic optimal controller $u_i = \mu_i(s_i)$
- optimal and deterministic even though s is defined in terms of
 - convex hull of feasible distributions
 - randomized policies

Example: Two players

suppose

 s_1 is sufficient for $x, y_2 \mid y_1$ s_2 is sufficient for $x, y_1 \mid y_2$

then s_1, s_2 is team sufficient for $x \mid y_1, y_2$

for example, if x, y_1, y_2 are jointly Gaussian, then

$$s_1 = \mathrm{E}\left(\begin{bmatrix}x\\y_2\end{bmatrix} \mid y_1\right) \qquad s_2 = \mathrm{E}\left(\begin{bmatrix}x\\y_1\end{bmatrix} \mid y_2\right)$$

Example: Triangular

- measurements: $y_1 = z_1$ and $y_2 = (z_1, z_2)$
- suppose

$$r_1$$
 is sufficient for $r_2 \mid z_1$
 r_2 is sufficient for $x \mid z_1, z_2$

• then s_1, s_2 are team sufficient statistics for $x \mid y_1, y_2$, where

$$s_1 = r_1$$
$$s_2 = (r_1, r_2)$$

Gaussian case

$$s_1 = \mathcal{E}(x \mid z_1) s_2 = (\mathcal{E}(x \mid z_1), \mathcal{E}(x \mid z_1, z_2))$$

Example: Quadratic cost

player 1 measures z_1 and player 2 measures z_1, z_2 , cost is

$$\mathbf{E}\begin{bmatrix}x\\u_1\\u_2\end{bmatrix}^{\mathsf{T}}Q\begin{bmatrix}x\\u_1\\u_2\end{bmatrix}$$

optimal policy is

$$u_1 = K_1 x_{|1}$$

$$u_2 = K_2 x_{|1} + H(x_{|12} - x_{|1})$$

where

$$\begin{bmatrix} K_1 \\ K_2 \end{bmatrix} = \begin{bmatrix} Q_{22} & Q_{23} \\ Q_{32} & Q_{33} \end{bmatrix}^{-1} \begin{bmatrix} Q_{21} \\ Q_{31} \end{bmatrix} \qquad H = -Q_{33}^{-1}Q_{31}$$

Constructing sufficient statistics

for single player case, can construct from distribution:

- $\operatorname{prob}(y \mid x) = h(y)f(g(y), x)$ for some functions h, f
- the conditional distribution of $x \mid y$ is a function of s

many algebraic rules; write $suff(x \mid y)$ for the set of sufficient statistics

•
$$h(s) \in \operatorname{suff}(x \mid y) \implies s \in \operatorname{suff}(x \mid y)$$

• $s \in \operatorname{suff}(x \mid y) \implies s \in \operatorname{suff}(f(x, s) \mid y)$
• if $z \perp y \mid x$ then $s \in \operatorname{suff}(x \mid y) \implies s \in \operatorname{suff}(x, z \mid y)$
• if $x \perp u \mid y$ then $s \in \operatorname{suff}(x \mid y) \implies s \in \operatorname{suff}(x \mid y, u)$
• if $x \perp z \mid y$ then $s \in \operatorname{suff}(x, z \mid y) \iff s \in \operatorname{suff}(x \mid y)$ and $s \in \operatorname{suff}(z \mid y)$

Constructing team sufficient statistics

elimination theorem: if

$$s_n$$
 is sufficient for $(x, y_1, \dots, y_{n-1}) \mid y_n$
 (s_1, \dots, s_{n-1}) is team sufficient for $(x, s_n) \mid y_1, \dots, y_{n-1}$

then

$$s_1,\ldots,s_n$$
 is team sufficient for $x\mid y_1,\ldots,y_n$

- given a team sufficient statistic for n-1 players, constructs one for n players
- allows algebraic, inductive construction
- extensions of this result exist

Graphs example

$x_2 = f_{21}(x_1, w_2)$	$z_1 = h_1(x_1, v_1)$	$y_1 = z_1$
$x_3 = f_{31}(x_1, w_3)$	$z_2 = h_2(x_2, v_2)$	$y_2 = (z_1, z_2)$
	$z_3 = h_3(x_3, v_3)$	$y_3 = (z_1, z_3)$

pick s_i so that

 $\begin{array}{l} s_3 \text{ is sufficient for } x_1, x_3 \mid y_3 \\ s_2 \text{ is sufficient for } x_1, x_2 \mid y_2 \\ s_1 \text{ is sufficient for } s_2 \mid y_1 \text{ and for } s_3 \mid y_1 \end{array}$

 $s_1, (s_1, s_2), (s_1, s_3)$ are team sufficient for $x \mid y_1, y_2, y_3$

Dynamics

Dynamics

$$\begin{aligned} x^{t+1} &= f(x^t, w^t) \\ y^t &= h(x^t, w^t) \end{aligned}$$

- well-known stochastic filter allows update of belief state $\operatorname{prob}(x^t \mid y^0, \dots, y^t)$
- Kalman filter in linear Gaussian case
- sufficient statistics: if s^t is sufficient for $x^t \mid y^0, \dots, y^t$ then

$$\left(s^{t},y^{t+1}
ight)$$
 is sufficient for $x^{t+1}\mid y^{0},\ldots,y^{t+1}$

Dynamics

Suppose we have dynamics with measurements

$$x^{t+1} = f(x^t, w^t)$$
$$y_1^t = h_1(x^t, w^t)$$
$$\vdots$$
$$y_m^t = h_m(x^t, w^t)$$

if s_1^t,\ldots,s_m^t is team sufficient for $x^t \mid y_1^{0:t},\ldots,y_m^{0:t}$, then

 $(s_1^t, y_1^{t+1}), \dots, (s_m^t, y_m^{t+1})$ is team sufficient for $x^{t+1} \mid y_1^{0:t+1}, \dots, y_m^{0:t+1}$

Example: Updating on graphs

$$\begin{aligned} x_1^{t+1} &= f_1(x_1^t, w_1^t) & z_1^t = h_1(x_1^t, v_1^t) & y_1^t = z_1^t \\ x_2^{t+1} &= f_2(x_1^t, x_2^t, w_2^t) & z_2^t = h_2(x_2^t, v_2^t) & y_2 = (z_1^t, z_2^t) \end{aligned}$$

update team sufficient statistics

$$\begin{split} s_1^{t+1} &\in \mathrm{suff}(s_2^{t+1} \mid s_1^t, y_1^{t+1}) \\ s_2^{t+1} &\in \mathrm{suff}(x^{t+1} \mid s_1^t, s_2^t, y_2^{t+1}) \end{split}$$

 $s_1^t, (s_1^t, s_2^t)$ are team sufficient for $x^t \mid y_1^{0:t}, y_2^{0:t}$

Example: Updating on graphs

$$\begin{aligned} x_1^{t+1} &= f_1(x_1^t, w_1^t) & z_1^t = h_1(x_1^t, v_1^t) & y_1^t = z_1^t \\ x_2^{t+1} &= f_2(x_1^t, x_2^t, w_2^t) & z_2^t = h_2(x_2^t, v_2^t) & y_2 = (z_1^t, z_2^t) \end{aligned}$$

in the Gaussian case

$$s_1^t = \mathbf{E}(x^t \mid y_1^{0:t})$$
$$s_2^t = \mathbf{E}(x^t \mid y_2^{0:t})$$

- player 1 estimates x given its information
- player 2 runs the same estimator as player 1, plus an additional one

Summary

- new concept: sufficient statistics for multi-player problems
 - reduction in size of states and storage
 - maintains optimality independent of cost
 - fundamental to state-space synthesis
 - see thesis by Jeff Wu, Stanford
- many algebraic tools
- constructive algorithms for certain graphs
- updating algorithms
- dynamic programming

Thank you: Kishan Baheti, NSF, Fariba Fahroo, AFOSR/DARPA Former students: Laurent Lessard, John Swigart, Jeff Wu