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Outline

• abstractly describe controller structure

• separation structure

• sufficient statistics

• decentralized generalization
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State-space results



Swigart and Lall, ACC 2010, Matni and Doyle, CDC 2013
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S1

K1

S2

K2

minimize

lim
T→∞

1

T
E

∫ T

0

‖Fx(t) +Du(t)‖2 dt

player 1 measures x1
player 2 measures x1, x2
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Example: two-player state-feedback control

[
ẋ1
ẋ2

]
=

[
A11 0
A21 A22

] [
x1
x2

]
+

[
B11 0
B21 B22

] [
u1
u2

]
+ w

u1 = K11x1 +K12x2|1

u2 = K21x1 +K22x2|1 + J
(
x2|1 − x2

)



Lessard and Lall, Allerton 2011
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0

‖Fx(t) +Du(t)‖2 dt

player 1 measures y1
player 2 measures y1, y2
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Example: two-player output-feedback control

[
ẋ1
ẋ2

]
=

[
A11 0
A21 A22

] [
x1
x2

]
+

[
B11 0
B21 B22

] [
u1
u2

]
+ w[

y1
y2

]
=

[
C11 0
C21 C22

] [
x1
x2

]
+ v

u1 = K11x1|1 +K12x2|1

u2 = K21x1|1 +K22x2|1 + J
(
x2|1 − x2|2

)
+H

(
x1|1 − x1|2

)



Wu and Lall, AAAI 2010

1 2

S1

K1

S2

K2

minimize
T∑

t=0

E g(xt, ut)

player 1 measures x1
player 2 measures x1, x2
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Example: nonlinear systems

xt+1
1 = f1(xt1, u

t
1, w

t
1)

xt+1
2 = f2(xt1, x

t
2, u

t
1, u

t
2, w

t
2)

ut1 = µt
1(xt1, p

t
2|1)

ut2 = µt
2(xt1, x

t
2, p

t
2|1)



Swigart thesis 2010, Shah and Parrilo 2010, Lamperski and Doyle 2011
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Example: transitively closed graphs

ẋ = Ax+Bu

A, B are in the incidence algebra

optimal ui is a linear function of x|ancestors − x|(ancestors ∪ self)
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Status

• some LQ problems: we know the structure

• others: we know the controller, but not the structure

• few nonlinear problems
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Su�cient Statistics
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Stochastic decision problems

minimize E c(x, u)

subject to u = µ(y)

• given joint pdf of x, y, find best µ

• e.g., estimation: with c = ‖x− u‖

• can generate y, x with a model, e.g., y = Ax+ w

• hypothesis testing, classification, detection, decision, etc.,
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Su�cient statistics

minimize E c(x, u)

subject to u = µ(y)

s = g(y) is called sufficient for x | y if

y⊥⊥x | s

• equivalently prob(x | s, y) does not depend on y

• conditional distribution x | y depends only on s

• Fisher 1922, Kolmogorov 1942
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Su�cient statistics

minimize E c(x, u)

subject to u = µ(y)

s = g(y) is called sufficient for x | y if

y⊥⊥x | s

optimal policy has the form u = µ(s)

• does not depend on cost function

• s may be much smaller than y

• saves communications, storage, sensors, . . .
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Examples: su�cient statistics

• Gaussian noisy measurements yi = x+ wi then s =
∑

i yi

• multiplicative uniform noise: yi = xwi then s = maxi yi

• yi is Bernoulli with prob(yi = 1 | x) = x, then s =
∑

i yi

• if y = Ax+ w and w is Gaussian, then s = AT y

• yi has discrete uniform distribution on [0, x], then s = maxi yi
called German tank problem

• many others . . .
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Team Su�ciency
all results in Jeff Wu’s thesis
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Team decision problems

minimize E c(x, u1, . . . , un)

subject to ui = µi(yi)

• given joint distribution x, y1, . . . , yn, find n policies µi

• formulated by Marschak, 55

• quadratic and Gaussian: Radner, 62

• general case NP-hard, Tsitsiklis and Athans, 85

• H2 model matching
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Optimization

minimize
∑
xyu

cxupxyu

subject to pxyu = qxyKyu

Kyu binary, stochastic

• easy; separate problem for each y

• LP relaxation corresponds to randomized policies u = µ(y, w)

u is generated by u = µ(y, w) iff u⊥⊥x | y
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Optimization

minimize
∑
xyu

cxupxyu

subject to pxyu = qxyK
1
y1u1

. . .Kn
ynun

Ki
yiui

binary, stochastic

• relax the feasible set to convex hull

pxyu ∈ co
{
qxyK

1
y1u1

. . .Kn
ynun

| Ki binary, stochastic
}

= H

• does not change cost
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Team decisions

we say random variables u1, . . . , un are a team decision, denoted

u1, . . . , un⊥⊥⊥x | y1, . . . , yn

if pxyu ∈ co
{
qxyK

1
y1u1

. . .Kn
ynun

| Ki binary, stochastic
}

• u1, . . . , un⊥⊥⊥x | y1, . . . , yn if and only if
u is generated by common randomness ui = µ(yi, w)

• reduces to conditional independence in single player case

• u1, . . . , un⊥⊥⊥x | y1, . . . , yn implies (u1, . . . , un)⊥⊥x | (y1, . . . , yn)
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Relaxation

minimize E c(x, u)

subject to u1, . . . , un⊥⊥⊥x | y1, . . . , yn

• not an algorithm, but very useful definition
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Multi-player su�cient statistics

minimize E c(x, u1, . . . , un)

subject to ui = µi(yi)

if si = gi(yi), then s1, . . . , sn are called team sufficient for x | y1, . . . , yn if

y1, . . . , yn⊥⊥⊥x | s1, . . . , sn

theorem: if s is team sufficient, then there exists an optimal policy of the form

ui = µi(si)
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Multi-player su�cient statistics

• s1, . . . , sn is team sufficient if y1, . . . , yn⊥⊥⊥x | s1, . . . , sn
• then there is a deterministic optimal controller ui = µi(si)

• optimal and deterministic even though s is defined in terms of

• convex hull of feasible distributions

• randomized policies
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Example: Two players

suppose
s1 is sufficient for x, y2 | y1
s2 is sufficient for x, y1 | y2

then s1, s2 is team sufficient for x | y1, y2

for example, if x, y1, y2 are jointly Gaussian, then

s1 = E

([
x
y2

] ∣∣∣∣ y1) s2 = E

([
x
y1

] ∣∣∣∣ y2)
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Example: Triangular

• measurements: y1 = z1 and y2 = (z1, z2)

• suppose
r1 is sufficient for r2 | z1
r2 is sufficient for x | z1, z2

• then s1, s2 are team sufficient statistics for x | y1, y2, where

s1 = r1

s2 = (r1, r2)

• Gaussian case

s1 = E(x | z1)

s2 =
(
E(x | z1),E(x | z1, z2)

)
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Example: Quadratic cost

player 1 measures z1 and player 2 measures z1, z2, cost is

E

 xu1
u2

T

Q

 xu1
u2


optimal policy is

u1 = K1x|1

u2 = K2x|1 +H(x|12 − x|1)

where [
K1

K2

]
=

[
Q22 Q23

Q32 Q33

]−1 [
Q21

Q31

]
H = −Q−133 Q31
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Constructing su�cient statistics

for single player case, can construct from distribution:

• prob(y | x) = h(y)f
(
g(y), x

)
for some functions h, f

• the conditional distribution of x | y is a function of s

many algebraic rules; write suff(x | y) for the set of sufficient statistics

• h(s) ∈ suff(x | y) =⇒ s ∈ suff(x | y)

• s ∈ suff(x | y) =⇒ s ∈ suff(f(x, s) | y)

• if z⊥⊥ y | x then s ∈ suff(x | y) =⇒ s ∈ suff(x, z | y)

• if x⊥⊥u | y then s ∈ suff(x | y) =⇒ s ∈ suff(x | y, u)

• if x⊥⊥ z | y then s ∈ suff(x, z | y) ⇐⇒ s ∈ suff(x | y) and s ∈ suff(z | y)
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Constructing team su�cient statistics

elimination theorem: if

sn is sufficient for (x, y1, . . . , yn−1) | yn
(s1, . . . , sn−1) is team sufficient for (x, sn) | y1, . . . , yn−1

then

s1, . . . , sn is team sufficient for x | y1, . . . , yn

• given a team sufficient statistic for n−1 players, constructs one for n players

• allows algebraic, inductive construction

• extensions of this result exist



2 1 3

26

Graphs example

x2 = f21(x1, w2) z1 = h1(x1, v1) y1 = z1

x3 = f31(x1, w3) z2 = h2(x2, v2) y2 = (z1, z2)

z3 = h3(x3, v3) y3 = (z1, z3)

pick si so that

s3 is sufficient for x1, x3 | y3
s2 is sufficient for x1, x2 | y2
s1 is sufficient for s2 | y1 and for s3 | y1

s1, (s1, s2), (s1, s3) are team sufficient for x | y1, y2, y3
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Dynamics
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Dynamics

xt+1 = f(xt, wt)

yt = h(xt, wt)

• well-known stochastic filter allows update of belief state prob(xt | y0, . . . , yt)

• Kalman filter in linear Gaussian case

• sufficient statistics: if st is sufficient for xt | y0, . . . , yt then

(
st, yt+1

)
is sufficient for xt+1 | y0, . . . , yt+1
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Dynamics

Suppose we have dynamics with measurements

xt+1 = f(xt, wt)

yt1 = h1(xt, wt)

...

ytm = hm(xt, wt)

if st1, . . . , s
t
m is team sufficient for xt | y0:t1 , . . . , y0:tm , then

(st1, y
t+1
1 ), . . . , (stm, y

t+1
m ) is team sufficient for xt+1 | y0:t+1

1 , . . . , y0:t+1
m
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Example: Updating on graphs

xt+1
1 = f1(xt1, w

t
1) zt1 = h1(xt1, v

t
1) yt1 = zt1

xt+1
2 = f2(xt1, x

t
2, , w

t
2) zt2 = h2(xt2, v

t
2) y2 = (zt1, z

t
2)

1 2

update team sufficient statistics

st+1
1 ∈ suff(st+1

2 | st1, yt+1
1 )

st+1
2 ∈ suff(xt+1 | st1, st2, yt+1

2 )

st1, (s
t
1, s

t
2) are team sufficient for xt | y0:t1 , y0:t2
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Example: Updating on graphs

xt+1
1 = f1(xt1, w

t
1) zt1 = h1(xt1, v

t
1) yt1 = zt1

xt+1
2 = f2(xt1, x

t
2, , w

t
2) zt2 = h2(xt2, v

t
2) y2 = (zt1, z

t
2)

1 2

in the Gaussian case

st1 = E(xt | y0:t1 )

st2 = E(xt | y0:t2 )

• player 1 estimates x given its information

• player 2 runs the same estimator as player 1, plus an additional one
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Summary

• new concept: sufficient statistics for multi-player problems

• reduction in size of states and storage

• maintains optimality independent of cost

• fundamental to state-space synthesis

• see thesis by Jeff Wu, Stanford

• many algebraic tools

• constructive algorithms for certain graphs

• updating algorithms

• dynamic programming
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