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Outline

abstractly describe controller structure
e separation structure

sufficient statistics

decentralized generalization



State-space results
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Example: two-player state-feedback control

j?l o A11 0 T + Bu 0 Uq .
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minimize S S
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player 1 measures z1

player 2 measures x1, 2 : @

up = K111 + Kia®a)
ug = Korx1 + Kaozgn + J($2|1 - 502)

Swigart and Lall, ACC 2010, Matni and Doyle, CDC 2013
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Example: two-player output-feedback control

$.1 A11 O T + Bn 0 Uy o
) Azr Ao |2 Bo1 Baa| |ua

yi| _[Cu 0 ||z
|:y2:| - [021 022} [1‘2} v

minimize S S
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player 1 measures y;

player 2 measures y1, y2 C @

ur = Knzyn + K222
ug = Ko121)1 + K22%91 + J(£U2|1 - 5E2|2) + H(331|1 - xl\z)

Lessard and Lall, Allerton 2011
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Example: nonlinear systems
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Wu and Lall, AAAI 2010
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Example: transitively closed graphs

= Ax + Bu
A, B are in the incidence algebra

s =
N % A

optimal u; is a linear function of Z|ancestors — Z|(ancestors U self)

Swigart thesis 2010, Shah and Parrilo 2010, Lamperski and Doyle 2011
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Status

e some LQ problems: we know the structure
e others: we know the controller, but not the structure

e few nonlinear problems



Sufficient Statistics
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Stochastic decision problems

minimize Ec(z,u)

subject to u=pu(y)

given joint pdf of x,y, find best i
e e.g., estimation: with ¢ = ||z — ul|

e can generate y, x with a model, e.g., y = Ax +w

hypothesis testing, classification, detection, decision, etc.,
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Sufficient statistics

minimize Ec(z,u)
subject to u = pu(y)
s = g(y) is called sufficient for x | y if

ylals

e equivalently prob(z | s,y) does not depend on y
e conditional distribution x | y depends only on s

e Fisher 1922, Kolmogorov 1942
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Sufficient statistics

minimize Ec(z,u)

subject to u = pu(y)

s = g(y) is called sufficient for x | y if

ylals

optimal policy has the form u = u(s)

e does not depend on cost function
e s may be much smaller than y

e saves communications, storage, sensors, . ..
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Examples: sufficient statistics

e Gaussian noisy measurements y; = = + w; then s = > y;
e multiplicative uniform noise: y; = zw; then s = max; y;
e y; is Bernoulli with prob(y; = 1| x) =z, then s =, y;
o if y= Az + w and w is Gaussian, then s = ATy

e y; has discrete uniform distribution on [0, z], then s = max; y;
called German tank problem

e many others ...



Team Sufficiency

all results in Jeff Wu's thesis
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Team decision problems

minimize Ec(z,uy,. .., uy,)

subject to w; = pi(yi)

given joint distribution x,y1,...,y,, find n policies y;

formulated by Marschak, 55

quadratic and Gaussian: Radner, 62

general case NP-hard, Tsitsiklis and Athans, 85

Hs5 model matching
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Optimization

minimize E CruPzyu

TYU

subject to  Payu = Guy Kyu

Ky, binary, stochastic

e easy; separate problem for each y

e LP relaxation corresponds to randomized policies u = p(y, w)

u is generated by u = p(y,w) iff u L x|y
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Optimization

minimize g CruPzyu

TYu

subject to  payu = Gy Ky, o KD

Yyiul YnUn

Kzlhul binary, stochastic

e relax the feasible set to convex hull

Payu € c0{qay K, ,, ... K", | K' binary, stochastic} = H

e does not change cost
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Team decisions

we say random variables uq,...,u, are a team decision, denoted

ulv"-aun-ﬂL17|yla"'ayn

if Pryu € Co{quK;lu1 ...K™ ., | K" binary, stochastic}

YnlUn

Uty ooy tp A2 | Y1, ..., Yy if and only if
u is generated by common randomness u; = p(y;, w)

reduces to conditional independence in single player case

Upyooostp W@ | Y1, ..., Yy implies (ug, ... u,) Lo | (y1,...

s Yn)
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Relaxation

minimize Ec(x,u)

subject to ug, . sun x|y,

e not an algorithm, but very useful definition
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Multi-player sufficient statistics
minimize Ec(z,uy,... up)
subject to w; = pi(yi)

if s; = ¢i(yi), then s1,...,s, are called team sufficient for x | y1,...,yn if

yla"'ayni“—x|slv"~75n

theorem: if s is team sufficient, then there exists an optimal policy of the form

U; = /’l’l(sl)
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Multi-player sufficient statistics

® 51,...,8y, is team sufficient if y1,...,yp W | $1,...,8,
e then there is a deterministic optimal controller u; = p;(s;)
e optimal and deterministic even though s is defined in terms of

e convex hull of feasible distributions

e randomized policies
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Example: Two players

suppose
s1 is sufficient for =,y | y1

s9 is sufficient for z,y1 | yo

then s1, so is team sufficient for x | y1, yo

for example, if z,y1,y2 are jointly Gaussian, then

cws((il) (]
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Example: Triangular

measurements: y; = z1 and y2 = (21, 22)

e suppose
r1 is sufficient for ro | 23

ro is sufficient for | 21, 22

then s1, so are team sufficient statistics for = | y1,y2, where

S1 =T
sy = (r1,72)
e Gaussian case

s1=E(z | 21)
s3= (Blz | 7). Ble | 21,22))
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Example: Quadratic cost

player 1 measures z; and player 2 measures 21, 22, cost is
T
T x
E U1 Q ul
Uz U2

Uy = le\l
U = Kzl"l + H(l"lz — .’E|1)

optimal policy is

where

K1l _ |Q2 Q2 ' Qa P
[KJ a {Q32 Q33] [le} H = —Q33Qmn
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Constructing sufficient statistics

for single player case, can construct from distribution:

e prob(y | z) = h(y)f(g(y),z) for some functions h, f

e the conditional distribution of z | y is a function of s

many algebraic rules; write suff (x | y) for the set of sufficient statistics

h(s) e suff(z | y) = s € suff(x | y)

sesuff(z |y) = sesuff(f(z,s)]|y)

if zly|xthen s € suff(z |y) = s e€suff(x,z|y)

if e L u|ythen s esuff(z|y) = s e suff(z|y,u)

if v 1z |ythen s €suff(z,z|y) <= sesuff(x]|y)and s € suff(z | y)
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Constructing team sufficient statistics

elimination theorem: if

Sy, is sufficient for (z,y1,...,Yn-1) | Yn
($1,.-.,8n—1) is team sufficient for (z,5,) | Y1,- -, Yn—1
then
S1,.-.,8n is team sufficient for x | y1,...,Yn

e given a team sufficient statistic for n—1 players, constructs one for n players
e allows algebraic, inductive construction

e extensions of this result exist
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Graphs example

T2 = f21($17w2) 21 = hl(l‘l,m) Y1 =21
x3 = fa1(x1,ws) 2y = ha(x2,v2) Y2 = (21, 22)
z3 = h3(x3,v3) ys = (21, 23)

pick s; so that

s3 is sufficient for z1, 23 | y3 @M

s9 is sufficient for z1, 2 | Y2

s1 is sufficient for sy | y1 and for s3 | y1

s1, (s1, $2), (81, s3) are team sufficient for = | y1, Y2, ys




Dynamics
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Dynamics

e well-known stochastic filter allows update of belief state prob(x? | 4°, ...

e Kalman filter in linear Gaussian case

o sufficient statistics: if s is sufficient for 2t | 4°, ...,y then

(s',y") is sufficient for 2'*" | y°, ... y't!
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Dynamics

Suppose we have dynamics with measurements

£ = fatu)

yi = hl(zta wt)

yfn = hm(xtv wt)

if st,..., st isteam sufficient for 2* | 49 ... %!, then
(st gt thy), ... (st,, ybth) is team sufficient for a1 | 0 o g0l
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Example: Updating on graphs

oy = fi(af, wi) 21 = ha (a4, 01) v

t+1 _fQ(thQMwQ) Zé :hQ(x§7U5) Yz =

update team sufficient statistics

t+1 c Suﬁ-( t+1 | Sia t+1)

H'l € suff(z t+1 | 51,52,y§+1)

st (st sh) are team sufficient for | ¥, 49+
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Example: Updating on graphs

oy = fi(af, wi) 21 = ha (a4, 01) i =2

S = hhahouh) kb = (e

in the Gaussian case

=E(z" [ ))
E(z' | 497

51
t
Sy =

e player 1 estimates x given its information

e player 2 runs the same estimator as player 1, plus an additional one



32

Summary

e new concept: sufficient statistics for multi-player problems

e reduction in size of states and storage
e maintains optimality independent of cost
e fundamental to state-space synthesis

e see thesis by Jeff Wu, Stanford
e many algebraic tools
e constructive algorithms for certain graphs
e updating algorithms

e dynamic programming
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