Sufficient Statistics for Decentralized Decision

Sanjay Lall, Stanford

August 7, 2014

On the 20th anniversary of CDS at Caltech

Outline

- abstractly describe controller structure
- separation structure
- sufficient statistics
- decentralized generalization

State-space results

Example: two-player state-feedback control

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
B_{11} & 0 \\
B_{21} & B_{22}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]+w
$$

minimize
$\lim _{T \rightarrow \infty} \frac{1}{T} \mathrm{E} \int_{0}^{T}\|F x(t)+D u(t)\|^{2} d t$
player 1 measures x_{1}
player 2 measures x_{1}, x_{2}

$$
\begin{aligned}
& u_{1}=K_{11} x_{1}+K_{12} x_{2 \mid 1} \\
& u_{2}=K_{21} x_{1}+K_{22} x_{2 \mid 1}+J\left(x_{2 \mid 1}-x_{2}\right)
\end{aligned}
$$

Example: two-player output-feedback control

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
B_{11} & 0 \\
B_{21} & B_{22}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]+w} \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
C_{11} & 0 \\
C_{21} & C_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+v}
\end{aligned}
$$

minimize
$\lim _{T \rightarrow \infty} \frac{1}{T} \mathrm{E} \int_{0}^{T}\|F x(t)+D u(t)\|^{2} d t$
player 1 measures y_{1}
player 2 measures y_{1}, y_{2}

$$
\begin{aligned}
& u_{1}=K_{11} x_{1 \mid 1}+K_{12} x_{2 \mid 1} \\
& u_{2}=K_{21} x_{1 \mid 1}+K_{22} x_{2 \mid 1}+J\left(x_{2 \mid 1}-x_{2 \mid 2}\right)+H\left(x_{1 \mid 1}-x_{1 \mid 2}\right)
\end{aligned}
$$

Lessard and Lall, Allerton 2011

Example: nonlinear systems

$$
\begin{aligned}
& x_{1}^{t+1}=f_{1}\left(x_{1}^{t}, u_{1}^{t}, w_{1}^{t}\right) \\
& x_{2}^{t+1}=f_{2}\left(x_{1}^{t}, x_{2}^{t}, u_{1}^{t}, u_{2}^{t}, w_{2}^{t}\right)
\end{aligned}
$$

minimize

$$
\sum_{t=0}^{T} \mathrm{E} g\left(x^{t}, u^{t}\right)
$$

player 1 measures x_{1}

player 2 measures x_{1}, x_{2}

$$
\begin{aligned}
& u_{1}^{t}=\mu_{1}^{t}\left(x_{1}^{t}, p_{2 \mid 1}^{t}\right) \\
& u_{2}^{t}=\mu_{2}^{t}\left(x_{1}^{t}, x_{2}^{t}, p_{2 \mid 1}^{t}\right)
\end{aligned}
$$

Example: transitively closed graphs

Status

- some LQ problems: we know the structure
- others: we know the controller, but not the structure
- few nonlinear problems

Sufficient Statistics

Stochastic decision problems

$$
\begin{array}{rr}
\text { minimize } & \mathrm{E} c(x, u) \\
\text { subject to } & u=\mu(y)
\end{array}
$$

- given joint pdf of x, y, find best μ
- e.g., estimation: with $c=\|x-u\|$
- can generate y, x with a model, e.g., $y=A x+w$
- hypothesis testing, classification, detection, decision, etc.,

Sufficient statistics

$$
\begin{array}{rr}
\text { minimize } & \mathrm{E} c(x, u) \\
\text { subject to } & u=\mu(y)
\end{array}
$$

$s=g(y)$ is called sufficient for $x \mid y$ if

$$
y \Perp x \mid s
$$

- equivalently $\operatorname{prob}(x \mid s, y)$ does not depend on y
- conditional distribution $x \mid y$ depends only on s
- Fisher 1922, Kolmogorov 1942

Sufficient statistics

$$
\begin{array}{rr}
\text { minimize } & \mathrm{E} c(x, u) \\
\text { subject to } & u=\mu(y)
\end{array}
$$

$s=g(y)$ is called sufficient for $x \mid y$ if

$$
y \Perp x \mid s
$$

optimal policy has the form $u=\mu(s)$

- does not depend on cost function
- s may be much smaller than y
- saves communications, storage, sensors, ...

Examples: sufficient statistics

- Gaussian noisy measurements $y_{i}=x+w_{i}$ then $s=\sum_{i} y_{i}$
- multiplicative uniform noise: $y_{i}=x w_{i}$ then $s=\max _{i} y_{i}$
- y_{i} is Bernoulli with $\operatorname{prob}\left(y_{i}=1 \mid x\right)=x$, then $s=\sum_{i} y_{i}$
- if $y=A x+w$ and w is Gaussian, then $s=A^{T} y$
- y_{i} has discrete uniform distribution on $[0, x]$, then $s=\max _{i} y_{i}$ called German tank problem
- many others ...

Team Sufficiency

all results in Jeff Wu's thesis

Team decision problems

$$
\begin{aligned}
\operatorname{minimize} & \mathrm{E} c\left(x, u_{1}, \ldots, u_{n}\right) \\
\text { subject to } & u_{i}=\mu_{i}\left(y_{i}\right)
\end{aligned}
$$

- given joint distribution x, y_{1}, \ldots, y_{n}, find n policies μ_{i}
- formulated by Marschak, 55
- quadratic and Gaussian: Radner, 62
- general case NP-hard, Tsitsiklis and Athans, 85
- H_{2} model matching

Optimization

$$
\begin{aligned}
\operatorname{minimize} & \sum_{x y u} c_{x u} p_{x y u} \\
\text { subject to } & p_{x y u}=q_{x y} K_{y u} \\
& K_{y u} \text { binary, stochastic }
\end{aligned}
$$

- easy; separate problem for each y
- LP relaxation corresponds to randomized policies $u=\mu(y, w)$

$$
u \text { is generated by } u=\mu(y, w) \text { iff } u \Perp x \mid y
$$

Optimization

$$
\begin{array}{cl}
\operatorname{minimize} & \sum_{x y u} c_{x u} p_{x y u} \\
\text { subject to } & p_{x y u}=q_{x y} K_{y_{1} u_{1}}^{1} \ldots K_{y_{n} u_{n}}^{n} \\
& K_{y_{i} u_{i}}^{i} \text { binary, stochastic }
\end{array}
$$

- relax the feasible set to convex hull

$$
p_{x y u} \in \operatorname{co}\left\{q_{x y} K_{y_{1} u_{1}}^{1} \ldots K_{y_{n} u_{n}}^{n} \mid K^{i} \text { binary, stochastic }\right\}=H
$$

- does not change cost

Team decisions

we say random variables u_{1}, \ldots, u_{n} are a team decision, denoted

$$
u_{1}, \ldots, u_{n} \Perp x \mid y_{1}, \ldots, y_{n}
$$

if $p_{x y u} \in \operatorname{co}\left\{q_{x y} K_{y_{1} u_{1}}^{1} \ldots K_{y_{n} u_{n}}^{n} \mid K^{i}\right.$ binary, stochastic $\}$

- $u_{1}, \ldots, u_{n} \Perp x \mid y_{1}, \ldots, y_{n}$ if and only if u is generated by common randomness $u_{i}=\mu\left(y_{i}, w\right)$
- reduces to conditional independence in single player case
- $u_{1}, \ldots, u_{n} \Perp x \mid y_{1}, \ldots, y_{n}$ implies $\left(u_{1}, \ldots, u_{n}\right) \Perp x \mid\left(y_{1}, \ldots, y_{n}\right)$

Relaxation

$$
\begin{aligned}
\operatorname{minimize} & \mathrm{E} c(x, u) \\
\text { subject to } & u_{1}, \ldots, u_{n} \Perp x \mid y_{1}, \ldots, y_{n}
\end{aligned}
$$

- not an algorithm, but very useful definition

Multi-player sufficient statistics

$$
\begin{aligned}
\operatorname{minimize} & \mathrm{E} c\left(x, u_{1}, \ldots, u_{n}\right) \\
\text { subject to } & u_{i}=\mu_{i}\left(y_{i}\right)
\end{aligned}
$$

if $s_{i}=g_{i}\left(y_{i}\right)$, then s_{1}, \ldots, s_{n} are called team sufficient for $x \mid y_{1}, \ldots, y_{n}$ if

$$
y_{1}, \ldots, y_{n} \Perp x \mid s_{1}, \ldots, s_{n}
$$

theorem: if s is team sufficient, then there exists an optimal policy of the form

$$
u_{i}=\mu_{i}\left(s_{i}\right)
$$

Multi-player sufficient statistics

- s_{1}, \ldots, s_{n} is team sufficient if $y_{1}, \ldots, y_{n} \Perp x \mid s_{1}, \ldots, s_{n}$
- then there is a deterministic optimal controller $u_{i}=\mu_{i}\left(s_{i}\right)$
- optimal and deterministic even though s is defined in terms of
- convex hull of feasible distributions
- randomized policies

Example: Two players

suppose
s_{1} is sufficient for $x, y_{2} \mid y_{1}$
s_{2} is sufficient for $x, y_{1} \mid y_{2}$
then s_{1}, s_{2} is team sufficient for $x \mid y_{1}, y_{2}$
for example, if x, y_{1}, y_{2} are jointly Gaussian, then

$$
s_{1}=\mathrm{E}\left(\left.\left[\begin{array}{c}
x \\
y_{2}
\end{array}\right] \right\rvert\, y_{1}\right) \quad s_{2}=\mathrm{E}\left(\left.\left[\begin{array}{c}
x \\
y_{1}
\end{array}\right] \right\rvert\, y_{2}\right)
$$

Example: Triangular

- measurements: $y_{1}=z_{1}$ and $y_{2}=\left(z_{1}, z_{2}\right)$
- suppose

$$
\begin{gathered}
r_{1} \text { is sufficient for } r_{2} \mid z_{1} \\
r_{2} \text { is sufficient for } x \mid z_{1}, z_{2}
\end{gathered}
$$

- then s_{1}, s_{2} are team sufficient statistics for $x \mid y_{1}, y_{2}$, where

$$
\begin{aligned}
& s_{1}=r_{1} \\
& s_{2}=\left(r_{1}, r_{2}\right)
\end{aligned}
$$

- Gaussian case

$$
\begin{aligned}
& s_{1}=\mathrm{E}\left(x \mid z_{1}\right) \\
& s_{2}=\left(\mathrm{E}\left(x \mid z_{1}\right), \mathrm{E}\left(x \mid z_{1}, z_{2}\right)\right)
\end{aligned}
$$

Example: Quadratic cost

player 1 measures z_{1} and player 2 measures z_{1}, z_{2}, cost is

$$
\mathrm{E}\left[\begin{array}{c}
x \\
u_{1} \\
u_{2}
\end{array}\right]^{\mathrm{\top}} Q\left[\begin{array}{c}
x \\
u_{1} \\
u_{2}
\end{array}\right]
$$

optimal policy is

$$
\begin{aligned}
& u_{1}=K_{1} x_{\mid 1} \\
& u_{2}=K_{2} x_{\mid 1}+H\left(x_{\mid 12}-x_{\mid 1}\right)
\end{aligned}
$$

where

$$
\left[\begin{array}{l}
K_{1} \\
K_{2}
\end{array}\right]=\left[\begin{array}{ll}
Q_{22} & Q_{23} \\
Q_{32} & Q_{33}
\end{array}\right]^{-1}\left[\begin{array}{l}
Q_{21} \\
Q_{31}
\end{array}\right] \quad H=-Q_{33}^{-1} Q_{31}
$$

Constructing sufficient statistics

for single player case, can construct from distribution:

- $\operatorname{prob}(y \mid x)=h(y) f(g(y), x)$ for some functions h, f
- the conditional distribution of $x \mid y$ is a function of s
many algebraic rules; write $\operatorname{suff}(x \mid y)$ for the set of sufficient statistics
- $h(s) \in \operatorname{suff}(x \mid y) \Longrightarrow s \in \operatorname{suff}(x \mid y)$
- $s \in \operatorname{suff}(x \mid y) \Longrightarrow s \in \operatorname{suff}(f(x, s) \mid y)$
- if $z \Perp y \mid x$ then $s \in \operatorname{suff}(x \mid y) \Longrightarrow s \in \operatorname{suff}(x, z \mid y)$
- if $x \Perp u \mid y$ then $s \in \operatorname{suff}(x \mid y) \Longrightarrow s \in \operatorname{suff}(x \mid y, u)$
- if $x \Perp z \mid y$ then $s \in \operatorname{suff}(x, z \mid y) \Longleftrightarrow s \in \operatorname{suff}(x \mid y)$ and $s \in \operatorname{suff}(z \mid y)$

Constructing team sufficient statistics

elimination theorem: if
s_{n} is sufficient for $\left(x, y_{1}, \ldots, y_{n-1}\right) \mid y_{n}$
$\left(s_{1}, \ldots, s_{n-1}\right)$ is team sufficient for $\left(x, s_{n}\right) \mid y_{1}, \ldots, y_{n-1}$
then

$$
s_{1}, \ldots, s_{n} \text { is team sufficient for } x \mid y_{1}, \ldots, y_{n}
$$

- given a team sufficient statistic for $n-1$ players, constructs one for n players
- allows algebraic, inductive construction
- extensions of this result exist

Graphs example

$$
\begin{array}{lll}
x_{2}=f_{21}\left(x_{1}, w_{2}\right) & z_{1}=h_{1}\left(x_{1}, v_{1}\right) & y_{1}=z_{1} \\
x_{3}=f_{31}\left(x_{1}, w_{3}\right) & z_{2}=h_{2}\left(x_{2}, v_{2}\right) & y_{2}=\left(z_{1}, z_{2}\right) \\
& z_{3}=h_{3}\left(x_{3}, v_{3}\right) & y_{3}=\left(z_{1}, z_{3}\right)
\end{array}
$$

pick s_{i} so that
s_{3} is sufficient for $x_{1}, x_{3} \mid y_{3}$

s_{2} is sufficient for $x_{1}, x_{2} \mid y_{2}$
s_{1} is sufficient for $s_{2} \mid y_{1}$ and for $s_{3} \mid y_{1}$

Dynamics

Dynamics

$$
\begin{aligned}
x^{t+1} & =f\left(x^{t}, w^{t}\right) \\
y^{t} & =h\left(x^{t}, w^{t}\right)
\end{aligned}
$$

- well-known stochastic filter allows update of belief state $\operatorname{prob}\left(x^{t} \mid y^{0}, \ldots, y^{t}\right)$
- Kalman filter in linear Gaussian case
- sufficient statistics: if s^{t} is sufficient for $x^{t} \mid y^{0}, \ldots, y^{t}$ then

$$
\left(s^{t}, y^{t+1}\right) \text { is sufficient for } x^{t+1} \mid y^{0}, \ldots, y^{t+1}
$$

Dynamics

Suppose we have dynamics with measurements

$$
\begin{aligned}
x^{t+1} & =f\left(x^{t}, w^{t}\right) \\
y_{1}^{t} & =h_{1}\left(x^{t}, w^{t}\right) \\
& \vdots \\
y_{m}^{t} & =h_{m}\left(x^{t}, w^{t}\right)
\end{aligned}
$$

if $s_{1}^{t}, \ldots, s_{m}^{t}$ is team sufficient for $x^{t} \mid y_{1}^{0: t}, \ldots, y_{m}^{0: t}$, then

$$
\left(s_{1}^{t}, y_{1}^{t+1}\right), \ldots,\left(s_{m}^{t}, y_{m}^{t+1}\right) \text { is team sufficient for } x^{t+1} \mid y_{1}^{0: t+1}, \ldots, y_{m}^{0: t+1}
$$

Example: Updating on graphs

$$
\begin{array}{lll}
x_{1}^{t+1}=f_{1}\left(x_{1}^{t}, w_{1}^{t}\right) & z_{1}^{t}=h_{1}\left(x_{1}^{t}, v_{1}^{t}\right) & y_{1}^{t}=z_{1}^{t} \\
x_{2}^{t+1}=f_{2}\left(x_{1}^{t}, x_{2}^{t},, w_{2}^{t}\right) & z_{2}^{t}=h_{2}\left(x_{2}^{t}, v_{2}^{t}\right) & y_{2}=\left(z_{1}^{t}, z_{2}^{t}\right)
\end{array}
$$

update team sufficient statistics

$$
\begin{aligned}
& s_{1}^{t+1} \in \operatorname{suff}\left(s_{2}^{t+1} \mid s_{1}^{t}, y_{1}^{t+1}\right) \\
& s_{2}^{t+1} \in \operatorname{suff}\left(x^{t+1} \mid s_{1}^{t}, s_{2}^{t}, y_{2}^{t+1}\right)
\end{aligned}
$$

Example: Updating on graphs

$$
\begin{array}{lll}
x_{1}^{t+1}=f_{1}\left(x_{1}^{t}, w_{1}^{t}\right) & z_{1}^{t}=h_{1}\left(x_{1}^{t}, v_{1}^{t}\right) & y_{1}^{t}=z_{1}^{t} \\
x_{2}^{t+1}=f_{2}\left(x_{1}^{t}, x_{2}^{t},, w_{2}^{t}\right) & z_{2}^{t}=h_{2}\left(x_{2}^{t}, v_{2}^{t}\right) & y_{2}=\left(z_{1}^{t}, z_{2}^{t}\right)
\end{array}
$$

in the Gaussian case

$$
\begin{aligned}
& s_{1}^{t}=\mathrm{E}\left(x^{t} \mid y_{1}^{0: t}\right) \\
& s_{2}^{t}=\mathrm{E}\left(x^{t} \mid y_{2}^{0: t}\right)
\end{aligned}
$$

- player 1 estimates x given its information
- player 2 runs the same estimator as player 1 , plus an additional one

Summary

- new concept: sufficient statistics for multi-player problems
- reduction in size of states and storage
- maintains optimality independent of cost
- fundamental to state-space synthesis
- see thesis by Jeff Wu, Stanford
- many algebraic tools
- constructive algorithms for certain graphs
- updating algorithms
- dynamic programming

Thank you: Kishan Baheti, NSF, Fariba Fahroo, AFOSR/DARPA
Former students: Laurent Lessard, John Swigart, Jeff Wu

