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Increased shear stress at wall (blunting) is key! 
 

Turbulent flow has less 
efficient transport 

Laminar Flow Turbulent Flow Uw Uw 
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Drag and profile blunting 



• Transition as a linear stability problem 

Experiments 

Couette flow linearly stable                    

360critR 

wU

[Romanov 73, Tillmark & Alfredsson 92] 

Wall bounded shear flows: 
Linear analysis fails! 

• Two schools of thought 
− Form of the linear operator 
− Nonlinear phenomena are important 

Why does it fail? 
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How does the profile blunt? 



• Non-normality (i.e.        ) of  linear operator 
leads to large transient growth  
 
 

 
 

• Linear energy growth turns out to be key aspect of 
subcritical transition (i.e. the failure of linear theory) 
– Coupling operator plays a crucial role in transition and 

maintenance of wall-turbulence 
 

 

 

 

 
 

Not robust to disturbances/uncertainty! 
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Linear Models and Energy 



• Basic linear models do not reproduce blunted turbulent profile 
• Momentum redistribution comes from nonlinear interactions 
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3D coupling  

Question of which nonlinearity? 

Why a restricted nonlinear model 
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Linear Energy Growth 
• Parallel flows streamwise constant disturbances amplified 

O(R3) versus (R3/2) [Farrell & Ioannou 93] 

• Largest growth when initially seeded with streamwise vortices   
[Butler & Farrell 92] 

• In the unstable regime of channel flows streamwise structures 
have more energy than unstable modes [Jovanović & Bamieh 04] 

 Full Simulations and Experiments 
• Near wall dominated by elongated streaks/vortices  
• Longer structures throughout the height of the channel   

[eg. Kim & Adrian 99, Morrison et al. 02, Guala et al. 06, Hutchins & Marusic 07 …] 

• Couette flow: Core (channel center) structures longer than 
other flows  [Lee & Kim 91, Kitoh et al. 05, Tillmark & Alfredsson 92] 

Coherent structures in turbulence 
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IDEA:  MEAN flow is 2D, Use all 3 velocity components  
 (3C), to capture 3D  nature of turbulence. 
 

Hypothesis: Such a nonlinear mean flow 
model will capture blunting of profile 
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Velocity Components (U, V, W) 
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Streamwise constant (2D/3C) mean flow 
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This model rigorously connects observed flow features and 
linear energy growth to the blunting of the profile 
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The 2D/3C model 

  



( )U y y=
Theorem 
Plane Couette flow       is (conditionally) 
globally asymptotically stable for all Reynolds 
numbers  
 

We demonstrate how this links structural features & linear 
mechanisms to the nonlinearity that drives profile blunting 

No nonlinear instability  
transition scenarios  
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Maintains coupling operator 
Robustness problem 

is preserved 

Laminar is only solution  
of the 2D/3C model  

[Bobba et. al. 04] 
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Properties of 2D/3C 



Hypothesis: nonlinearity in       leads to blunting 
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Simulating the 2D/3C System 

swu′

Small Amplitude  
White Noise 

  2D/3C Model   

Understand large scale behavior and 
interpret the small stuff and unmodeled 
effects as a bounded perturbation 



*[Tsukahara et al.,  2006]  
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DNS* simulates full Navier Stokes 

Rw=3000, σnoise= 0.01 
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Blunting of the mean velocity profile 

[Gayme et al. 2010] 

The        nonlinearity captures blunting (i.e. more drag) 
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Implications 

• Results imply that mean flow is primarily determined 
by the streamwise constant interactions 

BUT 
• Stability of laminar solution implies turbulence is not 

self-sustaining 
• Turbulence is not 2D (cannot do a 2D experiment) 
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• Connected structures to profile blunting 

 



Restricted Nonlinear (RNL) Model  
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Depends on the 
instantaneous U(y, z, t) 

 ⋅ Denotes a streamwise average 

Streamwise constant mean flow 

Streamwise varying perturbations about that mean flow 

Based on a second order closure of the dynamics of the 
statistical state 

Adding some streamwise variation 



RNL Simulation 
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( ( ))t A t eu U u= +

Perturbations u(t) 
drive mean flow U(t) 

Perturbation 
Dynamics 

Mean flow 
Dynamics 

Mean flow U(t) 
regulates u(t) 



Velocity profiles for R=1000 
wUR
ν
δ

=

δ:= channel half height 
Uw:= plate velocity 

DNS Gibson 2012 
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Self sustaining turbulent activity in RNL 
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• Critical interaction of the turbulent mean flow to the 
perturbations (regulates the perturbation amplitude) 
– Maintains mean flow forcing (internal to the model)  

The self sustaining process 
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Ongoing work 
Goal: Identify the pathways that can be manipulated to 

 alter the turbulent state  

Perturbations u(t) 
drive mean flow U(t) 

Mean flow U(t) 
regulates u(t) 

Modified Restricted Nonlinear Model 
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