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Systemic Risk

4 )

Systemic Risk is a term used to describe
fragility in interconnected systems where
< small shocks at the subsystem level can >
result in large endogenous risk or in a
cascade of failures causing a partial or a
complete system shutdown. y

Air Traffic Congestion: $31.2B
"y & & & F & 4

Power Outages: S80B-S150B
AN SR S S S S S

Financial Crisis 2008: S5008B + ...
AN SN L L L L S

Major Disruptions: Fukushima, HIN1
A S L L S S A
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Economics of Outages

* Power outages cost US economy S80B -150B annually
(0.01 % of GDP)
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Crises

Italy Spain Portugal Ireland Greece
£45bn £70bn E15bn £88bn £8bn

exposure

M DebttoGDP © 183% 635% 8L3% 936% 1302%

Motivation: self-fulfilling crises
» debt crises (PIGS)
* bank runs (Argentina 1999-2002)
« social upheavals (Arab revolutions)

Information sharing (/ocality) enables coordination. How do equilibria depend on
details of information sharing?
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Disturbances in Urban Transportation Networks
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The Opportunity

Interactions between engineered and natural physical systems, institutions,
and social behavior (Complex Systems)

Availability of large heterogeneous data on such interactions

Physical and

engineered
Systems

Social Behavior

Institutions

I B Massachusetts
I I Institute of LIDS
Technology



The Opportunity

Interactions between engineered and natural physical systems, institutions,
and social behavior (Complex Systems)

Availability of large heterogeneous data on such interactions

Physical and
engineered
Systems

Social Behavior Institutions
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Systemic Risk

Characteristics

* Many heterogeneous decision makers

* Spatial/temporal dimensions (as an abstraction)

* Interconnections/feedback/Information Structure

Formulations

* Exogenous/idiosyncratic = indogenous risk

* Collective coordination on undesirable behavior

* Cascade (of spatial failures) = Temporal instability

Common Theme

* synchronization
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What I will talk about ....

* Value of Anarchy
* Animal Spirit

* Network Effect
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Value of Anarchy

Price of Anarchy: Loss in efficiency due to strategic interactions
in contrast to a coordination

* Simple model: one agent with shiftable demand and another
with instantaneous demand

* Contrast optimal efficient solution to a Stackelberg game of
strategic behavior

* A tradeoff is emerging!
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Setup
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Price of Anarchy: what about risk?

Aggregate demand sample path spikes
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Example

Aggregate demand stationary distribution

Low variance spikes
0.07 AN . . . . . . /
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— Non-cooperative
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So....

Classical Tradeoft:
Performance vs Robustness
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Animal Spirit: Boom-Bust
Model

IIII | ttt f LIDS
Technology



Animal Spirits

* Groups of people coordinate on a specific behavior
Behavior can have adverse effects -

Impacted by information structure e

* Global games provide a viable framework

* Financial Models
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Boom-Bust

Short-term
creditor

Pay back creditors Pay

or default departing
creditors

Liquidate

Long-term positions
creditor at fire-sale

discount
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Optimistic market

Credit boom

J

Pessimistic market

Short-term finance, m

T

Credit crunch

Secondary mark

>

Fire sale discount, k
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So....

Optimism and Pessimism about the
market drive the Boom-Bust

Can this be actionable?
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Network Effect: Flow
Models
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Network Effect: Flow Models

LWQ Pi : density on link ¢

+ Congestion dynamics

Rate of change of i = flow into link i — flow out of link i
* Flow conservation

Yo fi= > fi W

¢ incoming to v j outgoing from v
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Flow function

- Qutflow on a link depends on the traffic density on that link: f;(p;)

fz(‘{)t) fi(pi)

i
{

fmax
Je

Pi . density on link

Outflow is not necessarily
equal to inflow on a link

i

max
1

P
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Upper Bound on Margin of Resilience

+ VG, margin of resilience < min cut residual capacity

:= min (fma— 59

cut C
1eC
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A Tighter Upper Bound

* Y@, margin of resilience < min node cut residual capacity

=min Y (M- )
¢ outgoing from v
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Upstream Cascades
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Just Scratching the surface .....
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Conclusions

* New and exciting area!

* Characteristics
Many heterogeneous decision makers
Spatial/temporal dimensions (as an abstraction)
Interconnections/feedback/Information Structure

* Three Instances

Value of Anarchy: Classical tradeoff between optimality and
robustness

Animal Spirits: Coordination on undesirable behavior
Flow Dynamics: Cascades
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< Thank You >
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