CDS@20

Murray@50 Doyle@60 Astrom@80

1993 Leave of Absence @CDS

IEEE Awards Ceremony

'Systemic Risk' is the new 'Robustness'

Munther A. Dahleh EECS/LIDS/ESD

CDS@20 Murray@50 Doyle@60

Aug-2014

Systemic Risk

Systemic Risk is a term used to describe fragility in interconnected systems where small shocks at the subsystem level can result in large endogenous risk or in a cascade of failures causing a partial or a complete system shutdown.

Air Traffic Congestion: \$31.2B

Power Outages: \$80B-\$150B

Financial Crisis 2008: \$500B + ...

Major Disruptions: Fukushima, H1N1

Economics of Outages

 Power outages cost US economy \$80B -150B annually (0.01 % of GDP)

Crises

Motivation: self-fulfilling crises

- debt crises (PIGS)
- bank runs (Argentina 1999-2002)
- social upheavals (Arab revolutions)
- •

Information sharing (*locality*) enables coordination. How do equilibria depend on details of information sharing?

Disturbances in Urban Transportation Networks

(Courtesy: Google Maps)

The Opportunity

Interactions between engineered and natural physical systems, institutions, and social behavior (Complex Systems)

Availability of large heterogeneous data on such interactions

Physical and engineered Systems

The Opportunity

Interactions between engineered and natural physical systems, institutions, and social behavior (Complex Systems)

Availability of large heterogeneous data on such interactions

Physical and engineered Systems

Systemic Risk

Characteristics

- Many heterogeneous decision makers
- Spatial/temporal dimensions (as an abstraction)
- Interconnections/feedback/Information Structure

Formulations

- Exogenous/idiosyncratic → indogenous risk
- Collective coordination on undesirable behavior
- Cascade (of spatial failures) → Temporal instability

Common Theme

synchronization

What I will talk about

- Value of Anarchy
- Animal Spirit
- Network Effect

Value of Anarchy

Value of Anarchy

- Price of Anarchy: Loss in efficiency due to strategic interactions in contrast to a coordination
- Simple model: one agent with shiftable demand and another with instantaneous demand
- Contrast optimal efficient solution to a Stackelberg game of strategic behavior
- A tradeoff is emerging!

Setup

Price of Anarchy: what about risk?

Example

Aggregate demand stationary distribution

So....

Classical Tradeoff: Performance vs Robustness

Animal Spirit: Boom-Bust Model

Animal Spirits

- Groups of people coordinate on a specific behavior
 - Behavior can have adverse effects
 - Impacted by information structure
- Global games provide a viable framework
- Financial Models

Boom-Bust

So....

Optimism and Pessimism about the market drive the Boom-Bust

Can this be actionable?

Network Effect: Flow Models

Network Effect: Flow Models

Congestion dynamics

Rate of change of ρ_i = flow into link i – flow out of link i

Flow conservation

$$\sum_{i \text{ incoming to } v} f_i = \sum_{j \text{ outgoing from } v} f_j \qquad \forall v$$

Flow function

• Outflow on a link depends on the traffic density on that link: $f_j(\rho_j)$

 ho_i : density on link

Outflow is not necessarily equal to inflow on a link

Upper Bound on Margin of Resilience

• $\forall G$, margin of resilience \leq min cut residual capacity

$$:= \min_{\mathsf{cut}\ \mathcal{C}}\ \sum_{i \in \mathcal{C}} (f_i^{\mathsf{max}} - f_i^{\mathsf{eq}})$$

A Tighter Upper Bound

• $\forall G$, margin of resilience \leq min node cut residual capacity

$$:= \min_{v} \sum_{i \text{ outgoing from } v} (f_i^{\max} - f_i^{\mathrm{eq}})$$

Upstream Cascades

Just Scratching the surface

Conclusions

New and exciting area!

Characteristics

- Many heterogeneous decision makers
- Spatial/temporal dimensions (as an abstraction)
- Interconnections/feedback/Information Structure

Three Instances

- Value of Anarchy: Classical tradeoff between optimality and robustness
- Animal Spirits: Coordination on undesirable behavior
- Flow Dynamics: Cascades

Collaborators

Power Grid

- Mardavij Roozbehani: MT
- QinqQing Huang: MIT

Transportation

- Ketan Savla: USC
- Giacomo Como: Lund University, Sweden
- Daron Acemoglu: MIT
- Emilio Frazzoli: MIT

Finance

- Diego Feijer: MIT
- Spyros Zoumpoulis: INSEAD
- Andrew Lo: MIT

