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Context: Networked Systems and DPS

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems
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Context: Networked Systems and DPS

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

ANALOGY WITH TEMPORAL SYSTEMS (Systems & Controls perspective)

discrete space described by graph structure continuum space

Rn

discrete-time
system

tt continuous-time
system

tt

UNIFYING PERSPECTIVE: Spatio-temporal systems over discrete or continuum space
- Signals over continuous and/or discrete time and space

- Investigate systems properties (e.g. system norms & responses)
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Context: Case Studies

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

LOOK AT SPECIFIC PROBLEMS

− Vehicular Strings and Consensus

− Structured Control Design

− Synchrony in AC Power Networks

− Flow Turbulence & Control

− Spatio-temporal

Impulse Responses Frequency Responses
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Context: Emerging Common Themes

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

SOME COMMON THEMES EMERGE

• The use of system norms and responses

• Large-scale (even linear) systems exhibit some surprising phenomena

• Large-scale & Regular Networks −→ Asymptotic statements (in system size)

• Network topology imposes asymptotic “hard performance limits”
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Turbulence in Streamlined Flows (Boundary Layers)

Flow direction

boundary layer turbulence side view top view

Laminar Boundary Layer Turbulent Boundary Layer

skin-friction drag: laminar vs. turbulent

Streamlining a vehicle reduces form drag
Still stuck with: Skin-Friction Drag (higher in Turbulent BL than in Laminar BL)

Same in pipe flows (increases required pumping power)
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Control of Boundary Layer Turbulence

in nature: “passive” control active control with
sensor/actuator arrays︷ ︸︸ ︷

flow direction 

rigid base

flexible membrane
flow

corrugated skin compliant skin

Intuition: must have ability to actuate at spatial scale comparable to flow structures

spatial-bandwidth of controller ≥ plant’s bandwidth

Caveat: Plant’s dynamics are not well understood

obstacles
{

not only device technology
also: dynamical modeling and control design
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Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations:

∂tu = −∇uu− grad p + 1
R∆u

0 = div u

x

y

z

u
v

w

Hydrodynamic Stability: view NS as a dynamical system

laminar flow ūR := a stationary solution of the NS equations (an equilibrium)
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Hydrodynamic Stability: view NS as a dynamical system

laminar flow ūR := a stationary solution of the NS equations (an equilibrium)

laminar flow ūR stable ←→ i.c. u(0) 6= ūR,

u(t) t→∞−→ ūR

I typically done with dynamics linearized about ūR

I various methods to track further “non-linear behavior”

u(0)u(t)

ūR

CDS20, Aug 2014 9 / 17



Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations:

∂tu = −∇uu− grad p + 1
R∆u

0 = div u

x

y

z

u
v

w

Hydrodynamic Stability: view NS as a dynamical system

A very successful (phenomenologically predictive) approach for many decades

However: it fails badly in the special (but important) case of streamlined flows
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Mathematical Modeling of Transition: Adding Signal Uncertainty

Decompose the fields as u = ūR + ũ
↑ ↑

laminar fluctuations

Fluctuation dynamics: In linear hydrodynamic stability, − ∇ũũ is ignored

∂tũ = −∇ūR ũ −∇ũūR − grad p̃ + 1
R∆ũ − ∇ũũ + d

0 = div ũ

I a time-varying exogenous disturbance field d (e.g. random body forces)

NSR

(spatio-temporal system)

d ũ

rũũ

+

Input-Output view of the Linearized NS Equations

Jovanovic, BB, ’05 JFM
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Input-Output Analysis of the Linearized NS Equations

∂t

[
∆ṽ
ω̃

]
=

[
U′′∂x − U∆∂x + 1

R ∆2 0
−U′∂z −U∂x + 1

R ∆

] [
ṽ
ω̃

]
+

[
−∂xy ∂2

x + ∂2
z −∂zy

∂z 0 −∂x

][ dx
dy
dz

]
 ũ

ṽ
w̃

 =
(
∂2

x + ∂2
z

)−1
[

∂xy −∂z
∂2

x + ∂2
z 0

∂zy ∂x

][
ṽ
ω̃

]

x

y

z

u
v

w
NSR

(spatio-temporal system)

d ũ

∂tΨ = A Ψ + B d
ũ = C Ψ
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(spatio-temporal system)

d ũ

∂tΨ = A Ψ + B d
ũ = C Ψ

eigs (A): determine stability
(standard technique in Linear Hydrodynamic Stability)

Transfer Function d −→ ũ: determines response to disturbances(
uncommon in Fluid Mechanics

an “open system”

)
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Input-Output Analysis of the Linearized NS Equations
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∆ṽ
ω̃

]
=

[
U′′∂x − U∆∂x + 1

R ∆2 0
−U′∂z −U∂x + 1

R ∆

] [
ṽ
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ṽ
ω̃

]

x

y

z

u
v

w
NSR

(spatio-temporal system)

d ũ

∂tΨ = A Ψ + B d
ũ = C Ψ

Surprises:
Even when A is stable the gain d −→ ũ can be very large

( (H2 norm)2 scales with R3)

Input-output resonances very different from least-damped modes of A
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Modal vs. Input-Output Response

Typically: underdamped poles←→ frequency response peaks

cf. The “rubber sheet analogy”:
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Modal vs. Input-Output Response

However: Pole Locations = Frequency Response Peaks

Theorem: Given any desired pole locations

z1, . . . , zn ∈ C− (LHP),

and any stable frequency response H(jω), arbitrarily close
approximation is achievable with∥∥∥∥∥∥H(s) −

 N1∑
i=1

α1,i

(s− z1)i
+ · · · +

Nn∑
i=1

αn,i

(s− zn)i

∥∥∥∥∥∥
H2

≤ ε

by choosing any of the Nk ’s large enough

jω

|H (jω)|

σ
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∥∥∥∥∥∥
H2

≤ ε

by choosing any of the Nk ’s large enough

jω

|H (jω)|

σ

Remarks:
No necessary relation between pole locations and system resonances

( ε→ 0⇒ Nk →∞), i.e. this is a large-scale systems phenomenon

Large-scale systems: IO behavior not always predictable from modal behavior
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Modal vs. Input-Output Response

However: Pole Locations = Frequency Response Peaks

MIMO case: H(s) = (sI − A)−1

If A is normal (has orthogonal eigenvectors), then

σmax

(
(jωI − A)−1

)
=

1
distance (jω, nearest pole)

If A is non-normal : no clear relation between
singular value plot = eigs(A)
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Spatio-temporal Impulse and Frequency Responses

Translation invariance in x & z implies

x

y

z

u
v

wImpulse Response (Green’s Function)

ũ(t, x, y, z) =

∫
G(t − τ, x− ξ, y,y’ , z− ζ) d(τ, ξ, y′, ζ) dτdξdy′dζ

ũ(t, x, ., z) =

∫
G(t − τ, x− ξ, z− ζ) d(τ, ξ, ., ζ) dτdξdζ

G(t, x, z) : Operator-valued impulse response

Frequency Response

ũ(ω, kx, kz) = G(ω, kx, kz) d(ω, kx, kz)

G(ω, kx, kz) : Operator-valued frequency response (Packs lots of information!)

Spectrum of A:

σ(A) =
⋃
kx,kz

σ
(
Â(kx, kz)

)
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Modal vs. Input-Output Analysis

x

y

z

u
v

w
NSR

(spatio-temporal system)

d ũ
∂tΨ = A Ψ + B d

ũ = C Ψ

IR: G(t, x, z)

FR: G(ω, kx, kz)
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Modal vs. Input-Output Analysis
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w
NSR

(spatio-temporal system)

d ũ
∂tΨ = A Ψ + B d

ũ = C Ψ

IR: G(t, x, z)

FR: G(ω, kx, kz)

Modal Analysis: Look for unstable eigs of A
(⋃

kx,kz
σ
(
Â(kx, kz)

))

Flow type Classical linear theory Rc Experimental Rc

Channel Flow 5772 ≈ 1,000-2,000
Plane Couette ∞ ≈ 350
Pipe Flow ∞ ≈ 2,200-100,000
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Modal vs. Input-Output Analysis

x

y

z

u
v

w
NSR

(spatio-temporal system)

d ũ
∂tΨ = A Ψ + B d

ũ = C Ψ

IR: G(t, x, z)

FR: G(ω, kx, kz)

Modal Analysis: Look for unstable eigs of A
(⋃

kx,kz
σ
(
Â(kx, kz)

))
Channel Flow @ R = 2000, kx = 1, (kz = vertical dimension):

top view
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Modal vs. Input-Output Analysis

x

y

z

u
v

w
NSR

(spatio-temporal system)

d ũ
∂tΨ = A Ψ + B d

ũ = C Ψ

IR: G(t, x, z)

FR: G(ω, kx, kz)

Modal Analysis: Look for unstable eigs of A
(⋃

kx,kz
σ
(
Â(kx, kz)

))

Channel Flow @ R = 6000, kx = 1, kz = 0:

Flow structure of corresponding eigenfunction:
Tollmein-Schlichting (TS) waves
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Modal vs. Input-Output Analysis

x

y

z

u
v

w
NSR

(spatio-temporal system)

d ũ
∂tΨ = A Ψ + B d

ũ = C Ψ

IR: G(t, x, y,−1, z)

FR: G(ω, kx, kz)

Impulse Response Analysis: Channel Flow @ R = 2000

similar to “turbulent spots”
Jovanovic, BB, ’01 ACC,

more movies and pics at http://engineering.ucsb.edu/~bamieh/pics/impulse_page.html
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Spatio-temporal Frequency Response

G(ω, kx, kz) is a LARGE object! (very “data rich”! )

one visualization method: supω σmax

(
G(ω, kx, kz)

)

Jovanovic, BB, ’05 JFM

What do the corresponding flow structures look like?
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G(ω, kx, kz) is a LARGE object! (very “data rich”! )

one visualization method: supω σmax

(
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)

What do the corresponding flow structures look like?

Figure 1: Singular values of Ĥ at {kx = 0.01, kz = 1.67, ω = −0.0066}, and {kx = 0.1, kz = 2.12, ω =
−0.066}, in Poiseuille flow with R = 2000.

Figure 2: Streamwise velocity perturbation development for largest singular value (left) and second largest
singular value (right) of operator Ĥ at {kx = 0.01, kz = 1.67, ω = −0.0066}, in Poiseuille flow with R = 2000.
High speed streaks are represented by red color, and low speed streaks are represented by green color.
Isosurfaces are taken at ±0.5.

Figure 3: Streamwise velocity perturbation development for largest singular value (first row) and second
largest singular value (second row) of operator Ĥ at {kx = 0.1, kz = 2.12, ω = −0.066}, in Poiseuille flow
with R = 2000. High speed streaks are represented by red color, and low speed streaks are represented by
green color. Isosurfaces are taken at ±0.5.

3

23

streamwise velocity isosurfaces
Figure 8: Streamwise vorticity perturbation development for largest singular value of operator Ĥ at {kx =
0.1, kz = 2.12, ω = −0.066}, in Poiseuille flow with R = 2000. High vorticity regions are represented by
yellow color, and low vorticity regions are represented by blue color. Isosurfaces are taken at ±0.4.

Figure 9: Streamwise vorticity perturbation development for second largest singular value of operator Ĥ at
{kx = 0.1, kz = 2.12, ω = −0.066}, in Poiseuille flow with R = 2000. High vorticity regions are represented
by yellow color, and low vorticity regions are represented by blue color. Isosurfaces are taken at ±0.8.

6

24

streamwise vorticity isosurfaces
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Spatio-temporal Frequency Response

G(ω, kx, kz) is a LARGE object! (very “data rich”! )

one visualization method: supω σmax

(
G(ω, kx, kz)

)

What do the corresponding flow structures look like?
much closer (than TS waves) to structures seen in turbulent boundary layers
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Spatio-temporal Frequency Response

How to view of G(ω, kx, kz) ?

bring ∇ũũ back in through IQCs?

NSR

(spatio-temporal system)

d ũ

rũũ

+
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